首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对多壁碳纳米管(MWCNTs)进行改性处理,得到表面接枝1,3,5-苯三甲酸的碳纳米管(B-MWCNTs)。分别将MWCNTs和B-MWCNTs分散在环氧树脂基体及上浆剂中,通过缠绕成型法制备含有MWCNTs的碳纤维增强环氧树脂预浸料,并采用热压成型工艺制备MWCNTs/碳纤维环氧树脂复合材料层合板。结果表明,B-MWCNTs在环氧树脂基体和上浆剂中的分散状态明显优于MWCNTs。添加B-MWCNTs后复合材料的玻璃化转变温度(Tg)和失重5%时对应的温度均有所提高。而且,添加B-MWCNTs可以明显提高碳纤维环氧树脂复合材料的力学性能。当MWCNTs含量为0.5%(质量分数)时,B-MWCNTs/碳纤维环氧树脂复合材料层合板的压缩强度、层间剪切强度和冲击后压缩强度(CAI)分别提高了14.3%,37.1%和23.4%。  相似文献   

2.
高能辐照下环氧树脂对腰形碳纤维的表面改性   总被引:1,自引:0,他引:1  
利用高能射线共辐照接枝,在环氧树脂/丙酮溶液中对腰形截面碳纤维表面进行了处理.通过扫描电子显微镜(SEM)观察了纤维的表面及复合材料断口形貌的变化;利用浸润性测试方法分析了纤维表面能的变化;采用X射线光电子能谱(XPS)方法分析了纤维表面化学元素及官能团的组成;通过层间剪切强度(ILSS)表征了纤维增强环氧树脂复合材料的界面性能.结果表明,处理后碳纤维表面沟槽变深,氧元素和碳元素百分含量比(O/C)提高,表面能极性分量增加,ILSS最大可提高18.3%,达到91.3MPa.  相似文献   

3.
采用γ射线辐照法、电化学聚合法改性碳纤维表面,研究了以三缩四乙二醇为接枝单体,在不同的辐照剂量下辐照处理碳纤维,以及电化学聚合衣康酸改性碳纤维。利用扫描电子显微镜、X光电子能谱仪、电子万能试验机研究了处理前后的碳纤维的表面形貌、复合材料的断面形貌、表面化学组成及复合材料层间剪切强度(ILSS)的变化。研究结果表明,2种处理方法都能有效提高碳纤维表面活性,与环氧树脂的浸润性提高,复合材料断面纤维拔出明显减少。在200kGy的辐照剂量下处理得到的碳纤维与环氧树脂复合材料的ILSS的提高幅度最大,达到31.2%。同时经电聚合处理后的碳纤维与环氧树脂复合材料的ILSS的提高幅度要大于经γ射线辐照处理后的试样,达到40%。  相似文献   

4.
利用化学气相沉积(CVD)法在碳纤维(CF)表面生长碳纳米管(CNTs),制备了CF-CNTs多尺度增强体,增强体与环氧树脂(EP)结合得到CF-CNTs/EP复合材料。采用场发射扫描电镜(FESEM)、高分辨透射电镜(HRTEM)等方法研究了不同CVD工艺参数对CF-CNTs多尺度增强体的影响,并研究了不同CVD时间对CFCNTs/EP复合材料力学性能的影响。结果表明:沉积温度为500℃、沉积时间为10min、反应压力为0.02 MPa时,制备得到的多尺度增强体性能最好。CF-CNTs多尺度增强体较未生长CNTs的碳纤维与环氧树脂的浸润性明显提高。在CVD时间为10min时,所得CF-CNTs/EP复合材料的界面剪切强度(IFSS)最大可提高90.6%,层间剪切强度(ILSS)最大可提高24.4%。同时,在制备环氧树脂复合材料过程中碳纤维的不加捻与加捻相比,其ILSS提高了11.3%。  相似文献   

5.
为了改善玄武岩纤维/环氧树脂复合材料的界面性能,通过偶联剂对氧化石墨烯进行改性,并将改性后的氧化石墨烯引入到上浆剂中对玄武岩纤维进行表面涂覆改性,同时制备了氧化石墨烯-玄武岩纤维/环氧树脂复合材料.采用FTIR表征了氧化石墨烯的改性效果;运用SEM分析了改性上浆剂处理对玄武岩纤维表面及复合材料断口形貌的影响和作用机制.结果表明:偶联剂成功接枝到氧化石墨烯表面;玄武岩纤维经氧化石墨烯改性的上浆剂处理后,表面粗糙度及活性官能团含量增加,氧化石墨烯-玄武岩纤维/环氧树脂界面处的机械齿合作用及化学键合作用增强,界面黏结强度得到改善,玄武岩纤维的断裂强力提高了30.8%,氧化石墨烯-玄武岩纤维/环氧树脂复合材料的层间剪切强度提高了10.6%.  相似文献   

6.
采用高压静电纺丝法制备了含多壁碳纳米管(MWCNTs)的聚醚酰亚胺(PEI)纳米纤维取向薄膜, 用SEM和TEM观察其微观形貌。将PEI纳米纤维薄膜铺放于环氧树脂中, 通过实验测试其冲击和拉伸性能。结果表明, 含MWCNTs的PEI纳米纤维膜对环氧树脂具有良好的增韧效果。Ⅰ型层间断裂韧性(GIC)测试表明, 用含质量分数3%活性碳纳米管(a-MWCNTs)的PEI纤维膜对T700碳纤维/环氧树脂复合材料进行层间增韧能够明显改善其层间断裂韧性。  相似文献   

7.
对连续纤维增强热塑性复合材料(CFRTPCs)进行3D打印能够实现无模具快速制造,扩展增材制造的实际应用。为进一步提高3D打印连续碳纤维增强复合材料制件的性能,采用热塑性上浆剂对干碳纤维进行上浆处理,以尼龙6(PA6)为基体打印连续碳纤维增强复合材料,对比了上浆前后碳纤维表面性质及复合材料力学和界面性能。结果表明,上浆后碳纤维表面极性官能团增加,纤维与树脂浸润性改善;纤维表面粗糙度增加,纤维与树脂的机械结合力增强;上浆后碳纤维增强PA6复合材料较原始碳纤维增强PA6复合材料层间剪切强度提高42. 2%,层间结合增强,弯曲强度提高了82%,弯曲模量提高2. 46倍; 3D打印的上浆后碳纤维增强PA6复合材料试样断面上有明显纤维拔出现象,界面性能显著改善。  相似文献   

8.
采用高压静电纺丝法制备了含多壁碳纳米管(MWCNTs)的聚醚酰亚胺(PEI)纳米纤维取向薄膜,用SEM和TEM观察其微观形貌.将PEI纳米纤维薄膜铺放于环氧树脂中,通过实验测试其冲击和拉伸性能.结果表明,含MWCNTs的PEI纳米纤维膜对环氧树脂具有良好的增韧效果.Ⅰ型层间断裂韧性(GIC)测试表明,用含质量分数3%活性碳纳米管(a-MWCNTs)的PEI纤维膜对T700碳纤维/环氧树脂复合材料进行层间增韧能够明显改善其层间断裂韧性.  相似文献   

9.
为改善碳纤维/环氧树脂复合材料界面性能,采用重氮化电接枝法制备碳纳米管/碳纤维杂化增强体。首先采用混酸处理碳纳米管,得到微纳米级长度、端帽切除、具有更多悬挂键和活性反应位点的碳纳米管;再以重氮盐的非质子溶剂溶液为电解液,通过重氮盐电化学接枝将处理的碳纳米管均匀接枝到碳纤维表面,成功制备了碳纳米管/碳纤维杂化增强体。所制备增强体与环氧树脂的浸润性明显改善,有望改善界面载荷传递性能,提高复合材料界面剪切强度。  相似文献   

10.
采用碳纳米管电泳沉积到碳纤维表面,达到改性碳纤维复合材料界面性能的目的.将羧基化的碳纳米管在十六烷基三甲基溴化铵的分散作用下制备成不同浓度的水溶液,在电场作用下,将碳纳米管电泳沉积到碳纤维表面.通过扫描电子显微镜、X-射线光电子能谱以及动态接触角对处理前后的碳纤维的表面形貌、表面元素及浸润性进行表征.研究结果表明,经过电泳沉积碳纳米管后,碳纤维的表面粗糙度、表面极性官能团含量及表面能都有较大提高,纤维的浸润性得到提高.对复合材料的界面性能分析表明,复合材料的界面性能在经过处理后有很大提高,当碳纳米管的质量浓度为0.1%,界面剪切强度提高了72.93%.  相似文献   

11.
通过己二酸与环氧树脂反应,并用KOH中和制备的阴离子型水性环氧树脂(AAEK)具有良好的亲水性,可作为碳纤维上浆剂对碳纤维表面进行修饰,将处理后的碳纤维与环氧树脂复合制备成碳纤维/环氧树脂复合材料。利用红外、扫描电镜、原子力显微镜、吸附实验、万能材料试验机对AAEK改性后的碳纤维和AAEK改性后的碳纤维/环氧树脂复合材料进行表征和测试。结果表明,AAEK的最佳上浆质量分数和吸附量为1.0%和3 mg/g;AAEK处理后的短丝碳纤维在环氧树脂中的分散性得到明显改善;AAEK在碳纤维表面的吸附是介于单分子层和多分子层之间的吸附过程,符合Freundlich吸附等温模型;AAEK处理后的碳纤维单丝断裂强度有少量增加;AAEK改性后的碳纤维/环氧树脂复合材料的弯曲强度和层间剪切强度(ILSS)相比于改性前分别提高了168%和139%。  相似文献   

12.
通过己二酸与环氧树脂反应,并用KOH中和制备的阴离子型水性环氧树脂(AAEK)具有良好的亲水性,可作为碳纤维上浆剂对碳纤维表面进行修饰,将处理后的碳纤维与环氧树脂复合制备成碳纤维/环氧树脂复合材料。利用红外、扫描电镜、原子力显微镜、吸附实验、万能材料试验机对AAEK改性后的碳纤维和AAEK改性后的碳纤维/环氧树脂复合材料进行表征和测试。结果表明,AAEK的最佳上浆质量分数和吸附量为1.0%和3 mg/g;AAEK处理后的短丝碳纤维在环氧树脂中的分散性得到明显改善;AAEK在碳纤维表面的吸附是介于单分子层和多分子层之间的吸附过程,符合Freundlich吸附等温模型;AAEK处理后的碳纤维单丝断裂强度有少量增加;AAEK改性后的碳纤维/环氧树脂复合材料的弯曲强度和层间剪切强度(ILSS)相比于改性前分别提高了168%和139%。  相似文献   

13.
通过己二酸与环氧树脂反应,并用KOH中和制备的阴离子型水性环氧树脂(AAEK)具有良好的亲水性,可作为碳纤维上浆剂对碳纤维表面进行修饰,将处理后的碳纤维与环氧树脂复合制备成碳纤维/环氧树脂复合材料。利用红外、扫描电镜、原子力显微镜、吸附实验、万能材料试验机对AAEK改性后的碳纤维和AAEK改性后的碳纤维/环氧树脂复合材料进行表征和测试。结果表明,AAEK的最佳上浆质量分数和吸附量为1.0%和3 mg/g;AAEK处理后的短丝碳纤维在环氧树脂中的分散性得到明显改善;AAEK在碳纤维表面的吸附是介于单分子层和多分子层之间的吸附过程,符合Freundlich吸附等温模型;AAEK处理后的碳纤维单丝断裂强度有少量增加;AAEK改性后的碳纤维/环氧树脂复合材料的弯曲强度和层间剪切强度(ILSS)相比于改性前分别提高了168%和139%。  相似文献   

14.
采用上浆的方法将碳纳米管(CNTs)引入到碳纤维表面,制备CF/CNTs/环氧多尺度复合材料。相比上浆处理前,复合材料的层间剪切强度及弯曲强度分别提高了13.54%和12.88%。采用力调制原子力显微镜及扫描电镜的线扫描功能对复合材料界面相精细结构进行分析。结果表明:CNTs的引入在纤维和基体间构建了一种CNTs增强环氧树脂的界面过渡层。该界面过渡层具有一定厚度,且其模量和碳元素含量呈梯度分布。在固化成型前对含有CNTs的复合材料进行超声处理,促使碳纤维表面的CNTs向周围树脂中分散,发现复合材料的界面过渡层被弱化,其层间剪切强度及弯曲强度较超声处理前分别下降了7.33%和5.34%,验证了CNTs强化的界面过渡层对于提高复合材料界面性能的重要作用。  相似文献   

15.
为提高碳纤维/环氧树脂复合材料的界面粘结性能, 采用γ射线共辐照接枝方法对碳纤维表面改性, 利用X光电子能谱仪(XPS)、 扫描电子显微镜(SEM)、 电子万能材料试验机, 研究了在缩乙二醇丙酮溶液和环氧氯丙烷丙酮溶液中经200 kGy剂量的γ射线辐照接枝后, 碳纤维的表面化学元素及官能团组成、 表面形貌、 复合材料剪切断面形貌及其层间剪切强度(ILSS)的变化。研究表明, 缩乙二醇类接枝液的接枝效果较理想, 碳纤维接枝率达7%; 辐照处理碳纤维表面O/C比值和含氧官能团含量增加, 以此制备的碳纤维/环氧复合材料的ILSS提高, 最大提高率达31.2%; 同时还发现辐照接枝后的碳纤维表面粗糙度增大。  相似文献   

16.
采用两种上浆剂对聚丙烯腈(PAN)基炭纤维进行表面上浆,利用扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线元素分析(XPS)和反向气相色谱(IGC)研究了未上浆、上浆炭纤维的表面形貌、化学组成及纤维表面能,测试了未上浆和上浆炭纤维所制备复合材料的层间剪切强度(ILSS)并用SEM观察其断面形貌。结果表明,上浆后炭纤维表面变平滑,纤维表面n(O)/n(C)明显提高,含氧官能团(羟基、羧基)增加,炭纤维表面能降低。上浆后,复合材料的ILLS有所提高。  相似文献   

17.
李琪  郭丽  李香兰 《功能材料》2023,(2):2231-2236
选择以T700碳纤维为增强相,将碳纤维经浓HNO3浸渍处理0,40,80,120和160 min后掺入到环氧树脂中,制备了碳纤维增强环氧树脂复合材料。分析了浸渍时间对复合材料微观形貌、力学性能和热稳定性的影响。结果表明,经浓HNO3浸渍的碳纤维表面粗糙度增大,沟槽数量和深度增加,碳纤维和环氧树脂的结合强度增大;随碳纤维浸渍时间的增大,复合材料的界面剪切强度、层间剪切强度、弯曲强度和弯曲模量均先增大后减小,当浸渍时间为120 min时,复合材料的界面剪切强度和层间剪切强度均达到了最大值,分别为80.2和90.3 MPa,其弯曲强度和弯曲模量也达到了最大值,分别为902.6 MPa和79.3 GPa,且应力-应变最高点增大,弯曲性能提高;在800℃下浓HNO3浸渍处理120 min的复合材料的残炭率最大为58.2%,热稳定性最佳。  相似文献   

18.
以4,4'-亚甲基双(异氰酸苯酯)(MDI)为扩链剂, 将Triton X-100(TX-100)引入到双酚A二缩水甘油醚(DGEBA) 中, 设计合成水性碳纤维上浆剂(DGEBA-MDI-TX-100), 并利用合成的水性上浆剂对碳纤维表面进行改性。在此基础上, 以环氧树脂为基体, 制备碳纤维/环氧树脂复合材料, 研究了水性上浆剂改性碳纤维对碳纤维表面性能及其复合材料界面性能的影响。结果表明:与未经处理的碳纤维相比, 经过上浆剂改性后的碳纤维润湿性能得到了较大的提高, 与环氧树脂的接触角下降了 9.1%;与环氧树脂复合后制备的复合材料的界面剪切强度提高了64.7%。   相似文献   

19.
制备了含碳纳米管(CNTs)的水溶液, 将该水溶液作为浸润剂浸渍碳纤维并进行烘干, 采用扫描电镜(SEM)和原子力显微镜(AFM)研究了CNTs含量及浸润工艺对碳纤维表面CNTs分布的影响, 运用单丝断裂法分析了CNTs浸润剂处理对碳纤维/环氧树脂界面粘结性能的影响和作用机制。结果表明: CNTs可在T700和T300纤维表面黏附, 浸润剂中CNTs含量越高, CNTs在纤维表面含量越高; 对于CNTs含量较低的浸润剂, 采用增加浸润次数的方法, 能有效提高碳纤维表面CNTs的含量和碳纤维表面粗糙度; 经过CNTs浸润剂处理后, 碳纤维/树脂界面处的机械啮合作用增强, 界面粘结强度明显提高, 增幅最高达35.8%。  相似文献   

20.
使用自行合成的环氧改性水性聚氨酯(EWPU)上浆剂对碳纤维进行表面处理,主要研究了EWPU上浆剂对碳纤维表面及碳纤维/氰酸酯树脂复合材料界面性能的影响。采用扫描电镜(SEM)、傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)和静态接触角等表征方法对比研究了二次上浆处理前碳纤维(CF)和处理后碳纤维(MCF)的表面形貌、表面化学元素组成和浸润性的变化,并通过单纤维破碎实验和短梁剪切法,研究了EWPU上浆剂对碳纤维/氰酸酯树脂复合材料界面力学性能的影响。结果表明,经EWPU上浆处理后碳纤维表面O/C值增加了39.13%,表面活性官能团的含量增加了14.97%,碳纤维与树脂的初始和稳态接触角分别减小了19.41%和20.59%,碳纤维/氰酸酯树脂复合材料的单丝界面剪切强度和层间剪切强度分别增加了13.42%和14.29%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号