首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
通过己二酸与环氧树脂反应,并用KOH中和制备的阴离子型水性环氧树脂(AAEK)具有良好的亲水性,可作为碳纤维上浆剂对碳纤维表面进行修饰,将处理后的碳纤维与环氧树脂复合制备成碳纤维/环氧树脂复合材料。利用红外、扫描电镜、原子力显微镜、吸附实验、万能材料试验机对AAEK改性后的碳纤维和AAEK改性后的碳纤维/环氧树脂复合材料进行表征和测试。结果表明,AAEK的最佳上浆质量分数和吸附量为1.0%和3 mg/g;AAEK处理后的短丝碳纤维在环氧树脂中的分散性得到明显改善;AAEK在碳纤维表面的吸附是介于单分子层和多分子层之间的吸附过程,符合Freundlich吸附等温模型;AAEK处理后的碳纤维单丝断裂强度有少量增加;AAEK改性后的碳纤维/环氧树脂复合材料的弯曲强度和层间剪切强度(ILSS)相比于改性前分别提高了168%和139%。  相似文献   

2.
通过己二酸与环氧树脂反应,并用KOH中和制备的阴离子型水性环氧树脂(AAEK)具有良好的亲水性,可作为碳纤维上浆剂对碳纤维表面进行修饰,将处理后的碳纤维与环氧树脂复合制备成碳纤维/环氧树脂复合材料。利用红外、扫描电镜、原子力显微镜、吸附实验、万能材料试验机对AAEK改性后的碳纤维和AAEK改性后的碳纤维/环氧树脂复合材料进行表征和测试。结果表明,AAEK的最佳上浆质量分数和吸附量为1.0%和3 mg/g;AAEK处理后的短丝碳纤维在环氧树脂中的分散性得到明显改善;AAEK在碳纤维表面的吸附是介于单分子层和多分子层之间的吸附过程,符合Freundlich吸附等温模型;AAEK处理后的碳纤维单丝断裂强度有少量增加;AAEK改性后的碳纤维/环氧树脂复合材料的弯曲强度和层间剪切强度(ILSS)相比于改性前分别提高了168%和139%。  相似文献   

3.
以4,4'-亚甲基双(异氰酸苯酯)(MDI)为扩链剂, 将Triton X-100(TX-100)引入到双酚A二缩水甘油醚(DGEBA) 中, 设计合成水性碳纤维上浆剂(DGEBA-MDI-TX-100), 并利用合成的水性上浆剂对碳纤维表面进行改性。在此基础上, 以环氧树脂为基体, 制备碳纤维/环氧树脂复合材料, 研究了水性上浆剂改性碳纤维对碳纤维表面性能及其复合材料界面性能的影响。结果表明:与未经处理的碳纤维相比, 经过上浆剂改性后的碳纤维润湿性能得到了较大的提高, 与环氧树脂的接触角下降了 9.1%;与环氧树脂复合后制备的复合材料的界面剪切强度提高了64.7%。   相似文献   

4.
对多壁碳纳米管(MWCNTs)进行改性处理,得到表面接枝1,3,5-苯三甲酸的碳纳米管(B-MWCNTs)。分别将MWCNTs和B-MWCNTs分散在环氧树脂基体及上浆剂中,通过缠绕成型法制备含有MWCNTs的碳纤维增强环氧树脂预浸料,并采用热压成型工艺制备MWCNTs/碳纤维环氧树脂复合材料层合板。结果表明,B-MWCNTs在环氧树脂基体和上浆剂中的分散状态明显优于MWCNTs。添加B-MWCNTs后复合材料的玻璃化转变温度(Tg)和失重5%时对应的温度均有所提高。而且,添加B-MWCNTs可以明显提高碳纤维环氧树脂复合材料的力学性能。当MWCNTs含量为0.5%(质量分数)时,B-MWCNTs/碳纤维环氧树脂复合材料层合板的压缩强度、层间剪切强度和冲击后压缩强度(CAI)分别提高了14.3%,37.1%和23.4%。  相似文献   

5.
使用新型水性上浆剂O3PPA对碳纤维表面进行改性处理,使用聚己内酰胺树脂为基体制备碳纤维/聚己内酰胺树脂复合材料,使用X射线光电子能谱仪(XPS)、扫描电镜(SEM)、纤维强伸度仪(XQ-1A)、万能材料试验机等手段表征改性后的碳纤维和碳纤维/聚己内酰胺树脂复合材料。结果表明,O3PPA的最佳上浆质量分数和吸附量分别为1%和5 mg/g。经O3PPA处理的碳纤维单丝的断裂强度提高了12%,碳纤维短丝在聚己内酰胺树脂中的分散性明显提高。而经O3PPA处理的碳纤维/聚己内酰胺树脂复合材料,其弯曲强度和层间剪切强度比未处理分别提高了35%和46%。  相似文献   

6.
用溶胶-凝胶法制备硅溶胶对碳纤维进行表面改性,观测了环氧树脂液滴在单向排列碳纤维集束表面的铺展过程;以环氧树脂为基体制备单向排列的碳纤维/环氧树脂复合材料,研究了硅溶胶改性处理碳纤维对其拉伸性能的影响。结果表明:碳纤维经过硅溶胶改性处理后,Si—o—Si,-NH2等极性官能团的引入改善了环氧树脂对其的浸润性能,从而改善了碳纤维与环氧树脂间的界面粘结性能,使碳纤维/环氧树脂复合材料的横向拉伸强度显著改善,但纵向拉伸强度影响不大;与未经过表面处理的复合材料相比,经过硅溶胶改性处理的碳纤维/环氧树脂复合材料其横向拉伸强度提高了62.74%;与用硝酸处理的碳纤维制备的复合材料相比,用硝酸处理后再用硅溶胶处理的碳纤维所制备的复合材料,其横向拉伸强度提高了35.27%。  相似文献   

7.
首先采用"Friedel-Crafts"酰化反应制备羧基化多壁碳纳米管(MWCNTs)并将其与环氧树脂、丙酮混合制成含MWCNTs的上浆剂,然后用该上浆剂浸渍碳纤维制备碳纳米管/碳纤维多尺度增强纤维。采用扫描电镜研究了上浆处理对碳纤维表面形貌的影响,采用短臂梁剪切测试方法研究了含碳纳米管的上浆剂对碳纤维/环氧树脂复合材料层间剪切强度(ILSS)的影响。结果表明,碳纳米管在上浆剂中的分散状态直接影响纤维表面碳纳米管分布的均匀性;与未浸渍的碳纤维相比,含碳纳米管上浆剂浸渍后的碳纤维/环氧树脂复合材料的ILSS提高了34.33%。通过上浆剂红外光谱表征、纤维束表面浸润性测试及ILSS试样端口形貌的观察,分析了层间增韧机理。研究表明,碳纤维束表面浸润性的提高以及碳纤维/环氧树脂界面处化学键合作用增强,是ILSS提高的主要原因。  相似文献   

8.
为了改善玄武岩纤维/环氧树脂复合材料的界面性能,通过偶联剂对氧化石墨烯进行改性,并将改性后的氧化石墨烯引入到上浆剂中对玄武岩纤维进行表面涂覆改性,同时制备了氧化石墨烯-玄武岩纤维/环氧树脂复合材料.采用FTIR表征了氧化石墨烯的改性效果;运用SEM分析了改性上浆剂处理对玄武岩纤维表面及复合材料断口形貌的影响和作用机制.结果表明:偶联剂成功接枝到氧化石墨烯表面;玄武岩纤维经氧化石墨烯改性的上浆剂处理后,表面粗糙度及活性官能团含量增加,氧化石墨烯-玄武岩纤维/环氧树脂界面处的机械齿合作用及化学键合作用增强,界面黏结强度得到改善,玄武岩纤维的断裂强力提高了30.8%,氧化石墨烯-玄武岩纤维/环氧树脂复合材料的层间剪切强度提高了10.6%.  相似文献   

9.
以一定比例的甲基三乙氧基硅烷、正硅酸乙酯、对甲苯磺酸、γ-氨丙基三乙氧基硅烷、无水乙醇制备含硅溶胶,将含硅溶胶和聚醚型水性聚氨酯的水溶液以一定比例复合,制备碳纤维水性杂化上浆剂。研究了不同配比对上浆剂平均粒径和稳定性的影响,结果表明:当水性聚氨酯含量为0.02g/mL时,上浆剂乳液平均粒径为99.94nm,粒径分布较窄,稳定性较好;使用制备的杂化上浆剂对碳纤维进行上浆处理,结果显示:上浆后碳纤维单丝拉伸强度较商用碳纤维提高4.45%,较未上浆碳纤维提高11.04%;与环氧树脂复合后的复合材料界面剪切强度比商用碳纤维增强环氧树脂复合材料的提高了13.74%。  相似文献   

10.
以硅烷偶联剂和正硅酸乙酯(TEOS)为前躯体, 以固体酸-对甲苯磺酸为催化剂制备硅溶胶, 利用硅溶胶对碳纤维进行表面改性后, 以环氧树脂为基体, 制备碳纤维增强环氧树脂复合材料。利用SEM、 TEM、 万能试验机、 偏光显微镜等对表面改性前后的碳纤维形态、 力学性能及碳纤维/环氧树脂复合材料的界面性能进行表征, 研究了硅溶胶改性碳纤维对其复合材料界面性能影响。结果表明, 硅溶胶处理碳纤维后, 在碳纤维表面原位生成具有膜-粒结构的表面层, 改性后碳纤维的强度由2.41 GPa提高到3.00 GPa, 界面性能也得到了明显改善, 界面剪切强度(IFSS)提高了51.41%。  相似文献   

11.
使用自行合成的环氧改性水性聚氨酯(EWPU)上浆剂对碳纤维进行表面处理,主要研究了EWPU上浆剂对碳纤维表面及碳纤维/氰酸酯树脂复合材料界面性能的影响。采用扫描电镜(SEM)、傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)和静态接触角等表征方法对比研究了二次上浆处理前碳纤维(CF)和处理后碳纤维(MCF)的表面形貌、表面化学元素组成和浸润性的变化,并通过单纤维破碎实验和短梁剪切法,研究了EWPU上浆剂对碳纤维/氰酸酯树脂复合材料界面力学性能的影响。结果表明,经EWPU上浆处理后碳纤维表面O/C值增加了39.13%,表面活性官能团的含量增加了14.97%,碳纤维与树脂的初始和稳态接触角分别减小了19.41%和20.59%,碳纤维/氰酸酯树脂复合材料的单丝界面剪切强度和层间剪切强度分别增加了13.42%和14.29%。  相似文献   

12.
利用激光对玻璃纤维、玄武岩纤维和碳纤维进行表面改性后,以环氧树脂为基体,分别制备三种纤维增强环氧树脂复合材料。利用SEM和万能试验机对表面改性前后的碳纤维形态、力学性能及三种纤维/环氧树脂复合材料的力学性能和断面形貌进行表征,研究了纤维激光表面改性对三种纤维及其增强环氧树脂复合材料力学性能的影响。结果表明:激光表面改性对碳纤维/环氧树脂复合材料的力学性能提升最高,其拉伸强度最大提高了77.06%,冲击强度最大提高了31.25%,玄武岩纤维/环氧树脂复合材料的力学性能提升次之,而玻璃纤维/环氧树脂复合材料的力学性能有所下降。因此,激光进行表面改性适用于碳纤维和玄武岩纤维。  相似文献   

13.
采用上浆的方法将碳纳米管(CNTs)引入到碳纤维表面,制备CF/CNTs/环氧多尺度复合材料。相比上浆处理前,复合材料的层间剪切强度及弯曲强度分别提高了13.54%和12.88%。采用力调制原子力显微镜及扫描电镜的线扫描功能对复合材料界面相精细结构进行分析。结果表明:CNTs的引入在纤维和基体间构建了一种CNTs增强环氧树脂的界面过渡层。该界面过渡层具有一定厚度,且其模量和碳元素含量呈梯度分布。在固化成型前对含有CNTs的复合材料进行超声处理,促使碳纤维表面的CNTs向周围树脂中分散,发现复合材料的界面过渡层被弱化,其层间剪切强度及弯曲强度较超声处理前分别下降了7.33%和5.34%,验证了CNTs强化的界面过渡层对于提高复合材料界面性能的重要作用。  相似文献   

14.
对连续纤维增强热塑性复合材料(CFRTPCs)进行3D打印能够实现无模具快速制造,扩展增材制造的实际应用。为进一步提高3D打印连续碳纤维增强复合材料制件的性能,采用热塑性上浆剂对干碳纤维进行上浆处理,以尼龙6(PA6)为基体打印连续碳纤维增强复合材料,对比了上浆前后碳纤维表面性质及复合材料力学和界面性能。结果表明,上浆后碳纤维表面极性官能团增加,纤维与树脂浸润性改善;纤维表面粗糙度增加,纤维与树脂的机械结合力增强;上浆后碳纤维增强PA6复合材料较原始碳纤维增强PA6复合材料层间剪切强度提高42. 2%,层间结合增强,弯曲强度提高了82%,弯曲模量提高2. 46倍; 3D打印的上浆后碳纤维增强PA6复合材料试样断面上有明显纤维拔出现象,界面性能显著改善。  相似文献   

15.
以双酚A型二醚二酐(BPADA)、间苯二胺和1,3-二(4′-氨基苯氧基)苯(TPE-R)为原料合成了水溶性热塑性聚酰亚胺上浆剂,对国产高强高模碳纤维(HMCF)表面进行上浆处理并制备成复合材料。研究了不同单体摩尔比对上浆剂特性以及上浆处理后纤维表面结构性能的影响,进一步分析了热塑性上浆剂对国产高强高模碳纤维增强热塑性聚醚酮酮(PEKK)树脂基复合材料界面性能的影响。结果表明,当BPADA与TPE-R的单体摩尔比为1∶1时,合成得到的热塑性上浆剂不仅分子量分布均匀,而且具有优异的热稳定性,如温度554℃其热失重仅为5%。上浆处理后,高强高模碳纤维表面O/C由0.08增至0.18,提高了125%;上浆后纤维强度略有增高,模量几乎无变化;上浆处理后对复合材料界面性能改善明显,HMCF/PEKK复合材料层间剪切强度由处理前38.5 MPa提升至最高59.4 MPa,增幅高达54.3%。  相似文献   

16.
为提高玻纤增强环氧树脂复合材料的力学性能,采用静电植绒法将多壁碳纳米管(MWCNTs)附着在玻纤织物表面,得到改性的玻纤织物。利用一种低黏度的环氧树脂和所制得的改性织物,采用真空辅助成型工艺(VARI)制备了MWCNTs改性格玻纤织物/环氧树脂复合材料层合板,表征了层合板的力学性能。对进行力学实验后的MWCNTs改性玻纤织物/环氧树脂复合材料试样断口进行了SEM和OPM观察。结果显示:与未添加MWCNTs的玻纤织物/环氧树脂复合材料层合板相比,添加了MWCNTs的层合板的拉伸强度降低了10.24%,弯曲强度降低了13.90%,压缩强度降低了17.33%,拉伸模量和弯曲模量分别提高了19.38%和16.04%,压缩模量提高了13%;MWCNTs与玻纤织物之间的结合较弱,在拉伸作用下,存在明显的脱粘和分层;将改性玻纤织物在200℃下热压处理2h后,制备的MWCNTs改性玻纤织物/环氧树脂复合材料层合板的力学性能均有所提高,热压处理后树脂与玻纤织物之间的界面结合得到改善。  相似文献   

17.
为提高碳纤维/环氧树脂复合材料的界面粘结性能, 采用γ射线共辐照接枝方法对碳纤维表面改性, 利用X光电子能谱仪(XPS)、 扫描电子显微镜(SEM)、 电子万能材料试验机, 研究了在缩乙二醇丙酮溶液和环氧氯丙烷丙酮溶液中经200 kGy剂量的γ射线辐照接枝后, 碳纤维的表面化学元素及官能团组成、 表面形貌、 复合材料剪切断面形貌及其层间剪切强度(ILSS)的变化。研究表明, 缩乙二醇类接枝液的接枝效果较理想, 碳纤维接枝率达7%; 辐照处理碳纤维表面O/C比值和含氧官能团含量增加, 以此制备的碳纤维/环氧复合材料的ILSS提高, 最大提高率达31.2%; 同时还发现辐照接枝后的碳纤维表面粗糙度增大。  相似文献   

18.
本文对气相表面处理碳纤维的新工艺进行了系统研究。处理后的碳纤维强度、模量不下降,且其表面能、表面化学官能团含量明显增加;表面微晶结构变小,与环氧树脂复合后,层间剪切强度(LLSS)提高47%左右。本文还对复合材料断口的形态结构进行了分析,说明这种表面处理方法能有效改善碳纤维增强环氧树脂复合材料(CFRP)的界面粘结。  相似文献   

19.
为了研究电热作用对碳纤维/环氧树脂界面性能的影响机理,对不同强度电流处理后的碳纤维单丝/环氧树脂复合材料的界面剪切强度(IFSS)进行了表征。并采用扫描电子显微镜(SEM)、红外光谱仪(FT-IR)、X射线光电子能谱仪(XPS)、差示扫描量热仪(DSC)等实验手段分析了电流强度对界面性能的影响机理。结果表明,随着电流强度的提升,碳纤维单丝/环氧树脂复合材料的界面温度随之升高。IFSS呈现先增大后减小的趋势。2~6 mA直流电流加载一定时间后,碳纤维的表面形貌变化不明显,界面组分发生了后固化反应,玻璃化转变温度(T_g)呈上升趋势;当电流强度继续增大到8 mA(200℃)时,碳纤维表面的上浆剂出现明显烧蚀的现象,界面组分的大分子链发生断裂并逐渐老化,T_g降低。综合分析认为,碳纤维导电产生的焦耳热引起了界面组分物化性能的改变,是导致碳纤维/环氧树脂IFSS变化的主要原因。  相似文献   

20.
采用γ射线辐照法、电化学聚合法改性碳纤维表面,研究了以三缩四乙二醇为接枝单体,在不同的辐照剂量下辐照处理碳纤维,以及电化学聚合衣康酸改性碳纤维。利用扫描电子显微镜、X光电子能谱仪、电子万能试验机研究了处理前后的碳纤维的表面形貌、复合材料的断面形貌、表面化学组成及复合材料层间剪切强度(ILSS)的变化。研究结果表明,2种处理方法都能有效提高碳纤维表面活性,与环氧树脂的浸润性提高,复合材料断面纤维拔出明显减少。在200kGy的辐照剂量下处理得到的碳纤维与环氧树脂复合材料的ILSS的提高幅度最大,达到31.2%。同时经电聚合处理后的碳纤维与环氧树脂复合材料的ILSS的提高幅度要大于经γ射线辐照处理后的试样,达到40%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号