首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
双面太阳电池是指硅片的正面和反面都可以接受光照并产生光生电压和电流的太阳电池,由于受到结构等各种因素的影响,目前还没有完善的测试方案用于双面太阳电池的完整测试。基于太阳能仿真环境PC1D,采用控制变量的方法来测定电池背面反射率对双面太阳电池综合转换效能的影响,研究了双面电池在不同背面受光条件下的测试结果,得出电池背面背景反射率增大时,双面太阳电池的综合转换效能的变化规律;确定了双面电池合理的测试条件,给出了双面电池科学的测试方案。结论对双面太阳电池的测试和应用具有重要意义。  相似文献   

2.
利用TCAD半导体器件仿真软件对中低倍聚光光伏系统中应用的N型插指背接触(Interdigitated Back Contact,IBC)单晶硅太阳电池的电学性能进行了仿真研究,全面系统地分析了不同衬底电阻率和光强对电池短路电流密度、开路电压、填充因子及转换效率的影响。结果表明:IBC太阳电池的电学性能受到衬底电阻率和光强的显著影响。当光强较小(0.1 W/cm~2)时,随着衬底电阻率的增大,IBC太阳电池转换效率随之降低,最优的衬底电阻率为0.5?·cm。当光强较高(0.5~5 W/cm~2)时,随着衬底电阻率的增大,IBC太阳电池转换效率随之增大,最优的衬底电阻率为3?·cm。当光强进一步增大(10~50 W/cm~2)时,随着衬底电阻率的增大,IBC太阳电池转换效率呈现出先增大后减小的变化特点,最优的衬底电阻率为2?·cm。  相似文献   

3.
针对正面光照、背面光照及双面光照三种不同光照条件,利用TCAD半导体器件仿真软件全面系统地分析了背表面场结构参数对P型双面单晶硅太阳电池内量子效率(IQE)和短路电流密度(JSC)的影响。仿真结果表明:在300~700 nm短波段范围,双面光照情况下的IQE主要由BSF结构对背面光照光生载流子的影响决定。在700~1200 nm长波段范围,双面光照情况下的IQE主要由BSF结构对正面光照光生载流子的影响决定。当BSF扩散深度一定时,随着BSF表面浓度的增大,双面光照情况下JSC的变化特点与背面光照情况一致。BSF结构的变化对正面光照情况下JSC的影响较小((35)JSC=0.26×10~(–3)A/cm~2),而BSF结构参数的变化对背面光照情况下JSC的影响较大((35)JSC=10.59×10~(–3)A/cm~2),BSF结构对背面光照光生载流子的影响是导致双面光照JSC出现大幅变化的主要因素。  相似文献   

4.
多晶硅太阳电池的一维模拟计算   总被引:1,自引:0,他引:1  
提出了多晶硅太阳电池的一维物理模型,并对其在AM1.5太阳光照下的电池的短路电流密度Jsc、开路电压Voc、填充因子FF和转换效率η进行了模拟计算,重点分析了多晶硅晶粒尺寸和电池厚度对n /p结构的多晶硅太阳电池性能的影响.模拟中主要引入载流子的有效迁移率和有效扩散长度两个物理量.模拟结果表明,电池效率在厚度50μm以内随厚度的增加而增大,当厚度大于50μm以后趋于饱和;当晶粒尺寸在100 μm以内时,电池特性随晶粒尺寸的增加而显著提高,晶粒进一步增大时效率趋于饱和,此时背面复合速率的影响变大.  相似文献   

5.
利用quokka3仿真软件建立三维模型,对n型叉指背接触(IBC)单晶硅太阳电池的单元电池结构设计和栅线参数进行了仿真优化,并通过激光和丝网印刷进行了实验验证。实验结果表明,在不同IBC单元电池结构设计下,当p+发射区与n+背表面场区的宽度比值为4时,IBC太阳电池效率比宽度比值为2.3时的高0.11%。可通过减小单元电池宽度,增大p+发射区与n+背表面场区的宽度比值来获得更高的IBC太阳电池效率。在相同单元电池结构设计下,当细栅线宽度从40μm增加到60μm时,IBC太阳电池效率能够提高0.18%。且相比4主栅,6主栅IBC太阳电池效率可提高0.09%。因此,增加副栅线宽度和主栅线数量有利于IBC太阳电池效率的提升。  相似文献   

6.
为了提高单晶硅薄膜太阳能电池短路电流密度和转换效率, 采用在单晶硅薄膜太阳能电池正背面分别集成硅介质光栅和铝金属光栅的方法, 并利用有限时域差分法软件仿真研究了两种光栅的周期、厚度、占空比对单晶硅薄膜太阳能电池短路电流密度和光转换效率的影响。结果表明, 通过优化可得当正背面光栅都处于最优值时(介质光栅占空比F=0.8、介质光栅周期P=0.632μm、介质光栅厚度hg=0.42μm; 金属光栅占空比F1=0.9、金属光栅周期P=0.632μm、金属光栅厚度hm=0.005μm), 短路电流密度可达35.15mA/cm2, 转换效率为43.35%;将最优光栅单晶硅薄膜太阳能电池与传统单晶硅薄膜太阳能电池对比, 无论是光程路径还是吸收效率, 光栅单晶硅薄膜太阳能电池都有显著的提高。这为以后制备高性能薄膜太阳能电池提供了理论指导。  相似文献   

7.
为了减少太阳电池载流子的背面复合,采用离子束对沉积完SiNx减反射膜后的单面扩散和双面扩散的单晶硅片背面进行刻蚀,研究了刻蚀时间对太阳电池性能的影响.采用标准的太阳电池单片测试仪测试电池性能.发现背面经离子束刻蚀后,单面扩散和双面扩散电池片的并联电阻、开路电压、填充因子和转换效率都有所提高,而串联电阻和短路电流的变化则...  相似文献   

8.
蔡世俊 《电子器件》1996,19(2):85-89
背面点接触结构提高了硅太阳电池的转换效率,开启电压V∝和断路电流密度J∝均有很大的提高和增加,本文针对背面点接触的电池结构,建立了倒棱台单元的模型,通过对背电场与体串联电阻的分析,提出了体串联电阻的计算方法,给出了背面点接触面积和间距的优化设计条件。  相似文献   

9.
PERC结构多晶硅太阳电池的研究   总被引:1,自引:0,他引:1  
高效、低成本是目前硅太阳电池追求的主要目标。多晶硅太阳电池成本低,但其电性能较差。背面钝化及局部背接触是提高多晶硅太阳电池电性能的主要技术。通过采用SiO2/SiNx叠层膜作为背钝化介质层,依次经过背面开槽、丝网印刷、烧结形成背面局部接触,制备钝化发射极和背表面电池(PERC)结构多晶硅太阳电池。采用恒光源I-V特性测试系统测试其电性能,结果表明:较之常规铝背场多晶硅太阳电池,PERC结构电池在开路电压Voc、短路电流密度Jsc、转换效率η方面分别提高了13 mV、1.8 mA/cm2和0.67%(绝对值),其转换效率达到17.27%。PERC结构多晶硅电池采用了常规丝网印刷工艺,有利于实现高效多晶硅电池的产业化生产,具有很高的实际意义。  相似文献   

10.
利用TCAD半导体器件仿真软件详细地分析了体内和表面复合中心对产业化P型单晶硅太阳电池电学性能的影响。重点分析了当复合中心存在于太阳电池体内和表面时,电池内量子效率、暗电流及转换效率的变化特点。结果表明:对于单晶硅太阳电池,存在体复合中心临界密度(≈1×10~(13) cm~(–3))和表面复合中心临界密度(≈1×10~(12)cm~(–3))。当体内和表面复合中心密度分别小于其临界密度时,复合中心对太阳电池内量子效率、暗电流、短路电流密度、开路电压及转换效率的影响较小。但当体内和表面复合中心密度大于其临界密度时,随着体内和表面复合中心密度的增大,太阳电池电学性能随之显著降低。  相似文献   

11.
通过恒速移动线偏振飞秒激光焦点对非晶硅(a-Si) pin型薄膜太阳电池n型硅膜表面进行绒化刻蚀处理,形成不同周期间隔“凹槽”状结构.采用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对刻蚀后薄膜表面形貌进行了表征,证实了刻蚀区域表面能够诱导晶态多孔微结构形成.比较了飞秒激光刻蚀前后a-Si太阳电池的光电转换效率(η)、开路电压、短路电流密度和填充因子.结果表明,当飞秒激光脉冲能量为0.75 J/cm2、刻蚀周期间隔为15μm时,太阳电池光电转换效率达到14.9%,是未经过激光刻蚀处理电池光电转换效率的1.87倍.同时,反射吸收谱表明,电池表面多孔“光俘获”微结构的形成对其光电转换效率的提高起到了关键作用.  相似文献   

12.
叉指背接触式(IBC)太阳电池因正面没有金属栅线遮挡,具有较高的短路电流,且组件外观更加美观。但由于IBC太阳电池正负电极在背面交叉式分布,在制备过程中需要采用光刻掩模技术进行隔离,难以实现大规模生产。采用Quokka软件仿真模拟了电阻率和扩散方阻对n型IBC太阳电池效率的影响,并对不同电阻率和扩散方阻的电池片进行了实验验证,从n型单晶硅片电阻率的选择和扩散工艺优化方面为IBC太阳电池的规模化生产提供了理论基础。实验结果表明,电阻率为3~5Ω·cm、扩散方阻为70Ω/时,小批量生产的IBC太阳电池平均光电转换效率可达23.73%,开路电压为693 mV,短路电流密度为42.44 mA/cm2,填充因子为80.69%。  相似文献   

13.
利用旋涂法将自制的聚苯乙烯(PS)微球涂覆到不同厚度的单晶硅片上,作为钝化发射极和背面电池(PERC)的背接触开口的掩模,然后用快速热退火工艺使PS微球挥发形成PERC电池的背接触开口,最后用磁控溅射在PERC电池背面生长一层Ag电极。利用该方法制备了面积为40 mm×40 mm、厚度分别为40、55和70μm的三种超薄单晶PERC太阳电池。制备的超薄太阳电池未出现任何翘曲。超薄太阳电池的电流密度-开路电压(Jsc-Voc)曲线和外量子效率(EQE)曲线测试结果表明,随着电池厚度的减小,电池的转换效率随之下降。其中,40μm厚的电池转换效率最高达13.6%,平均转换效率为13.3%,并展现出良好的柔韧性,极限弯曲角度达到135°。  相似文献   

14.
实验研究了聚光太阳电池上光照强度、短路电流、开路电压、电池温度和光电转换效率随菲涅耳透镜与电池的距离变化关系。结果表明,聚光条件下,太阳电池性能的提高主要源于短路电流的变化,而不是开路电压;聚光后,太阳电池与透镜距离为焦长时,输出功率可以达到最大值;太阳电池的最大单位光强转换效率需要把太阳电池放到透镜焦点前。本文研究结果对于聚光光伏系统的研制具有指导意义。  相似文献   

15.
利用 Silvaco 公司的 Athena 工艺仿真软件和 Atlas 器件仿真软件,对 N 型插指背结背接触(InterdigitatedBack Contact,IBC)晶硅太阳电池普遍采用的前表面场(FSF)结构进行研究,详细分析了 IBC 晶硅电池 FSF 表面掺杂浓度及扩散深度对电池性能的影响。结果表明:具有不同表面掺杂浓度和扩散深度的 FSF 对 IBC 晶硅太阳电池短路电流密度(Jsc)、开路电压(Voc)和填充因子(FF)产生显著影响,从而影响电池的转换效率(Eff)。具有较低表面浓度、深扩散 FSF 结构的 IBC 晶硅太阳电池可获得较高转换效率,当表面掺杂浓度为 5×1017cm–3时,电池转换效率Eff最高,且随 FSF 扩散深度增加略有增加,最高转换效率可达 22.3%。  相似文献   

16.
研究了低光强下CdTe太阳电池的性能变化.基于经典的CdS/CdTe结构,建立了短路电流、开路电压、填充因子和转换效率等参数与光强之间的关系模型,模拟了0.02~1kW/m2光强范围内的主要参数变化规律.结果表明,随着光强的减小,CdTe电池短路电流呈线性减小,开路电压呈指数下降,填充因子先增大,在0.3 kW/m2附近达到最大值,之后迅速降低;转换效率逐渐恶化.研究结果为CdTe薄膜太阳电池在室外低光强下和室内应用提供了理论基础.  相似文献   

17.
利用Silvaco-TCAD半导体器件仿真软件对n型插指背接触(IBC)晶硅太阳电池衬底参数进行了优化,全面系统地分析了晶硅衬底厚度、电阻率、少子寿命对IBC太阳电池量子效率、短路电流、开路电压、转换效率的影响.结果表明:晶硅衬底少子寿命是影响IBC太阳电池性能的最主要因素.少子寿命越高,电池转换效率越高.当晶硅衬底电阻率为2Ω·cm,少子寿命为500 μs时,最优的衬底厚度范围为60~65μm,IBC太阳电池转换效率约为22.5%.利用高质量晶硅材料制备IBC太阳电池时,可降低对衬底厚度的要求.当晶硅衬底厚度为150 μm、少子寿命为500μs时,最优衬底电阻率为0.3 Ω·cm,IBC太阳电池转换效率约为23.3%.少子寿命越低,IBC太阳电池最优的衬底电阻率越大.  相似文献   

18.
郑大农  苏向斌  徐应强  牛智川 《红外与激光工程》2021,50(3):20200224-1-20200224-8
利用分子束外延的方法在GaSb衬底上生长GaSb热光伏电池单元,制作了两种不同的1 cm×1 cm面积尺寸的热光伏电池单元,它们有着不同的电极形状。通过不断优化分子束外延的生长条件,以期得到高质量的GaSb外延层。AFM图中显示的表面形貌表明器件有着高质量的外延层,其表面形貌的RMS只有1.5 ? (1 ?=0.1 nm)。测量和比较了两种热光伏电池的器件特性,包括开路电压、短路电流密度、光电转换效率、填充因子以及暗电流密度。在一个模拟太阳光照射下,热光伏电池单元有着0.303 V的开路电压和27.1 mA/cm2的短路电流密度。和只有简单电极形状的热光伏电池单元进行对比,有栅形电极形状的热光伏电池单元在短路电流密度和填充因子上具有更优异的表现。在红外光的照射下,有栅形电极形状的热光伏电池达到了一个最优的填充因子56.8%。  相似文献   

19.
Cd1-xZnxTe是直接带隙半导体材料,其禁带宽度随x值的变化在1.45eV~2.26eV间连续可调.将具有渐变带隙结构的材料作为太阳电池的光吸收层,可以在近背表面的薄层内产生一个准电场.该电场不仅能将俄歇复合发生的位置有效局域化,而且还可降低由表面复合引起的载流子损耗,增强光生载流子的收集效率,进而提高电池的光电转换效率.用渐变带隙Cd1-xZnxTe多晶薄膜替代了传统CdTe薄膜太阳电池中的均匀相CdTe光吸收层,并用AMPS软件模拟分析了渐变带隙Cd1-xZnxTe太阳电池的光电响应特性.经计算,该电池在理想情况下(无界面态、有背面场,正背面反射率分别为0和1)的光电转换效率高达41%.  相似文献   

20.
以In掺杂CdS量子点太阳能电池为例,讨论了SILAR次数对In掺杂CdS量子点敏化太阳能电池性能的影响。通过SEM、EDS、IPCE、紫外吸收光谱、J-V曲线、EIS等实验测试结果表明,当In掺杂CdS的摩尔比固定在1:5时,随着SILAR次数的增加,电池的短路电流密度、开路电压和光电转换效率都随着增加,当SILAR次数为6次时,In掺杂CdS的QDSCs光电转化效率达到了最大值(η=0.76%)。随着SILAR次数的继续增加,其光电转换效率将会下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号