首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to assess the validity of the cross section library for fast reactor physics, a set of benchmark calculation is proposed. The benchmark calculation is based upon mock-up experiments at three FCA cores with various compositions of central test regions, two of which were mock-ups of metallic fueled LMFBR's, and the other was a mock-up of a mixed oxide fueled LMFBR. One of the metallic cores included enriched uranium in the test region, while the others did not.

Physics parameters to be calculated are criticality, reaction rate ratios, plutonium and B4C sample worth, sodium void reactivity worth, and Doppler reactivity worth of 238U. Homogenized atomic number densities and various correction factors are given so that anyone can easily perform diffusion calculation in two-dimensional RZ-model and compare the results with the experiments. The validity of the correction factors are proved by changing the calculation method and used nuclear data file.  相似文献   

2.
This paper presents an approximation approach to predict the core characteristics based on parametric survey and an analysis of nuclear mechanism in a conceptual nuclear design for enhanced transuranics (TRU) burning mixed oxide fueled and sodium cooled fast reactor which can be realized in the near future. The design study of Advanced Recycling Reactor was conducted in the context of the program for the industry in Global Nuclear Energy Partnership initiatives, including a core in the first plant for demonstration and cores with enhanced TRU burning capability for the future plants. Both concepts for the first plant; low core height and large volume fraction of structure are deployed, seeking small TRU conversion ratio (CR)* and small void reactivity which are crucial in the design, but different approaches. In this paper, the TRU CR and the sodium void reactivity have been approximated with a single equation in these concepts, based on the theoretical formula related to the chain reaction in the reactor and the calculation results. Shortening the core height and increasing the structure volume fraction will enhance TRU enrichment through increased neutron leakage and capture, which will reduce a ratio of U-238 to sum of Pu-239 and Pu-241 so that TRU CR decreases from 0.78 to 0.57. A small ratio of sodium loss to plutonium fissile will be effective also in the reduction of positive reactivity effect by spectral hardening. On the other hand, when this ratio and geometrical buckling of flux reduce, negative contribution by the neutron leakage becomes small. Theses relations related to the positive void reactivity have been formularized by the approximation with few parameters within several percent respectively as well as the TRU CR, indicating that one of dominating parameters is the ratio of sodium loss to plutonium fissile in the void reactivity at large fast reactors. * = (1 − net loss of TRU/loss of heavy metal).  相似文献   

3.
Experimental study on reactivity worth for absorber material in HCLWR core has been carried out in a series of experiments using the Fast Critical Assembly (FCA) in Japan Atomic Energy Research Institute (JAERI). The central reactivity worth as well as the simulated control rod worth of B4C with different 10B content and of Hf was measured in FCA-HCLWR core fueled with enriched uranium. Both reactivity worths of B4C increase with 10B content. These increasing trends do not saturate to 90% enriched B4C. The Hf has the smaller reactivity worth than the 20% B4C. The experimental values are compared with the calculated ones which obtained from JENDL-2 data and the SRAC system. The calculation predicts well the dependence of reactivity worth on 10B content and underestimates the reactivity worth ratios of the Hf to the 20% B4C.  相似文献   

4.
The physics characteristics of large axially heterogeneous liquid-metal fast breeder reactors (LMFBRs), particularly the parameters for use in design and safety assessment, were examined using the JAERI fast critical assembly facility, arranged in Assembly XH-1, a partial mock-up of axially heterogeneous LMFBR. The properties measured were (1) criticality, (2) reaction rates and reaction rate ratios, (3) material sample worths, (4) sodium-void worths and (5) B4C control rod worths.

The results were compared with those of prior experiments with assemblies representing conventional homogeneous core. Confirmation was obtained of the typical nuclear characteristics attributed to axially heterogeneous LMFBRs, including flattening of the axial distribution of power and of the differential worth of control rod, as also lower sodium void worth.

Theoretical analyses paralleling the experiments, using JENDL-2 cross section library and JAERI standard calculation code system for fast reactor neutronics, resulted in some discrepancies, particularly for the internal blanket, in respect of plutonium sample worth, fission rate and fission rate ratio.  相似文献   

5.
The solving of ecological problems of future nuclear power is connected with the solving of long-lived radioactive waste utilization problems. It concerns primarily plutonium and minor actinides (MAs), accumulated in the spent fuel of nuclear reactors. One of the ways this can be solved is to use a fast reactor with uranium-free or inert matrix fuel (IMF). The physics of this type of reactor was widely investigated during last year for BN-800 reactors. The solution of the most important problems was: a decrease in non-uniformity of power distribution and an increase of the Doppler effect. The next stage of such core investigations is an evaluation of self-protection to beyond design accidents. Preliminary results show a high safety level of BN-800 reactors with IMF in the event of unprotected loss of coolant flow (ULOF) accident.  相似文献   

6.
《Annals of Nuclear Energy》2001,28(9):831-855
For a metallic fuel liquid metal fast breeder reactor, we studied a core concept for improving the Doppler coefficient and the sodium void reactivity without much sacrificing the breeding ratio and the burnup reactivity loss. In the concept, several ordinary fuel pins in all fuel assemblies of a core are substituted by pins containing only zirconium hydride (ZrH). A parametric survey for the ZrH fraction from about 1 to about 5% was performed in this study to investigate the reactivity coefficients and the associated demerits in order to search the optimum fraction of ZrH. The metallic fuel core containing about 3% of ZrH showed the good results for all parameters. Following the parametric study, the effect of hydrogenous material in a metallic fuel core was experimentally confirmed. Doppler reactivity, sodium void reactivity and sample reactivity worths of plutonium and B4C were measured in a series of critical experiment at FCA of JAERI. The experimental results showed that the hydrogenous material significantly improved the Doppler and the sodium void reactivities. Analysis of experimental results was performed to check the applicability of the present design codes for a fast reactor with hydrogenous materials.  相似文献   

7.
A reflector reactivity worth was measured by replacing stainless steel with zirconium at the FCA. The experimental result of the positive reflector reactivity worth demonstrates the effectiveness of the zirconium reflector compared with the SS reflector in the fast reactor core. This paper also focuses on the validation of standard calculation methods used for fast reactors with JENDL-4.0. As a result, it is confirmed that the standard calculation methods for the reflector reactivity worth show agreement within the experimental error.  相似文献   

8.
In the present paper, we calculate the sodium void reactivity worth of fast critical assemblies without whole-lattice homogenization in order to reduce errors associated with lattice homogenization. Firstly, we solve a neutron transport benchmark problem simulating fast critical assemblies composed of thin material plates with a discrete ordinates transport solver. The discrete ordinates transport solutions agree well with the Monte Carlo reference solutions; hence, we confirm the validity of the deterministic transport calculations for the sodium void reactivity worth of lattice-heterogeneous critical assemblies. Thereafter, the existing experimental data are calculated without whole-lattice homogenization. The result suggests that the lattice homogenization results in the overestimation of the leakage component of sodium void reactivity worth when the leakage component parallel to plate boundaries is dominant. Utilizing the numerical method without whole-lattice homogenization and the nuclear data JENDL-3.3, numerical solutions agree with the experimental data within 3σ of the experimental uncertainties.  相似文献   

9.
Axial fuel expansion and radial fuel bowing were simulated in mock-up cores of metallic fueled fast reactors at the Fast Critical Assembly (FCA). Reactivity worth caused by the simulation was measured and compared with calculations. Based on these experiments and calculations, the applicability of current calculation methods was discussed for both the first order perturbation theory (FOP) and the exact perturbation theory (EP).

For the axial fuel expansion reactivity worth, both FOP and EP showed 10 to 20% smaller values than the experiment. This underestimation was consistent to a C/E trend of axial distributions of plutonium sample worth. No significant difference was observed between FOP and EP, when transport correction was applied.

For the radial fuel bowing reactivity worth, the FOP showed about 10% larger values than the EP. Near the core central plane, the EP with transport correction showed good agreement with the experiment, while FOP showed overestimation by 14%. At the core axial edge, however, both FOP and EP underestimated the reactivity worth by more than 10%.  相似文献   

10.
A new method is proposed to separate the sodium void reactivity of step type FBR cores to components including non-leakage terms and a leakage term by using a newly developed perturbation code MCPERT where fluxes and adjoint fluxes are derived from a group-wise Monte Carlo code. The step type FBR core is a core where the height of the inner core is smaller than that of the outer core and a large sodium plenum region is located above the core so as to decrease the sodium void reactivity. The conventional diffusion perturbation method cannot treat such a large void region due to the diffusion approximation, while the Monte Carlo code can treat it exactly. In this study, a group-wise Monte Carlo code GMVP with a 70-group constant set JFS-3-J3.3 is employed to evaluate the neutron fluxes and adjoint fluxes which are used as inputs to the MCPERT code to evaluate the non-leakage terms. The leakage term is derived from the difference of the total sodium void reactivity evaluated by the direct calculation of GMVP and the summation of the non-leakage terms. It is found that the proposed method can provide the result approximately consistent to the ratio of the reactivity components derived from the conventional method.  相似文献   

11.
Fast cross section sets are prepared for the analysis of fast critical assemblies to test the agreement of calculated and measured integral parameters. Modifications are brought to fissile element cross sections making use of recently measured cross section data, and these updated cross section data are utilized to compare the calculated integral parameters of these assemblies, and to determine the effect brought to the calculated results by the differences between the data. The results are presented for the eigenvalue, central fission ratios and centra] sample reactivity in the 239Pu fueled assemblies ZPR- 3-48, 49, 50 and ZEBRA-6A, whose spectra simulate those of large fast reactors. In addition, for ZPR- 6-7 and ZPPR-2, which are large fast critical assemblies intended for testing the calcul ational procedures of practical demonstration reactor design, the results of analysis obtained with the updated cross section set are compared with experiments. It is found that the cross section for 241Pu recommended here satisfactorily agrees with the experimental reactivity worth.  相似文献   

12.
The effect of group collapsing applied to the perturbation theory for sample worth analysis in fast reactor systems is theoretically and numerically examined assuming the validity of the thin sample approximation.

As a result, the calculated worths of scattering predominant materials placed at the center of core are found to be strongly influenced by the group collapsing. The effect on the sample worth when the sample is placed in positions off the core center decreases with increasing distance from the center. It is noted that the reactivity perturbation due to inelastic scattering is also affected significantly by group collapsing especially near the core-blanket interface.

Based on the above observations, it is concluded that the perturbation theory with about 70 energy groups appropriately arranged is necessary to reproduce the experimental values of Na, O and Fe sample reactivity worths with accuracy efficient for ordinary purposes.  相似文献   

13.
快堆一般采用以碳化硼(B4C)为吸收剂的控制棒进行反应性控制。小型模块化快堆中子泄漏率较大,增殖能力偏弱,单位燃耗反应性损失较大。模块化反应堆运行周期较长,且需要紧凑型堆芯设计,控制棒数量有限。因此,小型模块化快堆需要高10B富集度的B4C进行反应性控制。由于吸收剂燃耗深、功率密度高且导热能力受辐照削弱严重,B4C的安全使用寿命有限。本文通过对比硼化铪(HfB2)、氢化铪(HfH162)和传统B4C为吸收剂的控制棒的反应性价值、堆芯功率分布、堆芯反应性反馈系数、控制棒温度裕度与吸收剂燃耗深度,发现HfB2有更高的安全裕度和更长的安全使用寿命。HfH162控制棒略微改善了功率分布,但其高温氢气解离问题有待进一步研究。  相似文献   

14.
钠空泡反应性效应是钠冷快堆核设计和安全分析的重要内容。本文基于多群节块扩散法,采用微扰理论推导出钠空泡反应性的计算方法,对1 000 MWe钠冷快堆MOX燃料堆芯的总钠空泡反应性、空间分布、物理分项进行了计算。结果表明,钠空泡反应性主要来源于中子泄漏的增加和能谱的硬化,两者一正一负,且空间分布规律相反,导致钠空泡反应性具有强烈的空间依赖性;对于所计算的MOX燃料堆芯钠空泡反应性高达3 $左右。计算和分析结果阐明了钠空泡反应性的产生机理和分布规律,可为低钠空泡的设计提供参考。  相似文献   

15.
This work shows the effect of the use of moderating layers on the sodium void effect in sodium cooled fast breeder reactors. The moderating layers consisting of either boron carbide B4C or uranium–zirconium hydride UZrH cause a strong reduction of the sodium void effect. Additionally these layers improve the fuel temperature effect and the coolant effect of the system. The use of the UZrH is significantly more effective for the reduction of the sodium void effect as well as for the improvement of the fuel temperature and the coolant effect. All changes cause by the insertion of the UZrH layer cause a significantly increased stability of the fast reactor system against transients. The moderating layers have only a small influence on the breeding effect and on the production of minor actinides.  相似文献   

16.
The 1,000kWe metal fueled sodium-cooled fast reactor concept “RAPID” to achieve highly automated reactor operation has been demonstrated. RAPID (Refueling by All Pins Integrated Design) is designed for a terrestrial power system which enables quick and simplified refueling. It is one of the successors of the RAPID-L, the operator-free fast reactor concept designed for lunar base power system. The essential feature of the RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small-size reactor core, 14,000 fuel pins are integrated and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 years.

Unique challenges in reactivity control systems design have been addressed in the RAPID concept. The reactor has no control rod but involves the following innovative reactivity control systems: lithium expansion modules (LEM) for inherent reactivity feedback, lithium injection modules (LIM) for inherent ultimate shutdown, and lithium release modules (LRM) for automated reactor startup. All these systems adopt 6Li as a liquid poison instead of B4C rods. In combination with LEMs, LIMs and LRMs, RAPID can be operated without an operator. In this paper, the RAPID reactor concept and its transient characteristics are presented.  相似文献   

17.
Design and safety aspects of long-life small safe fast reactors using liquid lead or lead-bismuth coolant with metallic or nitride fuel are discussed. Neutronic analyses are performed to investigate the effect of core height to diameter ratio (H/D) on design performance of the proposed reactors. All reactors are subjected to the constraint of 12 years operation without refueling and shuffling with constant 150 MWt reactor power and also to the requirement of maximum excess reactivity during burnup to be less than 0.1%Δk. The results show that the pancake design with H/D of ?2/3 gives the most negative coolant void coefficient under the requirements for excess reactivity. Modified designs with the central region axially fulfilled with fertile material are proposed to improve the coolant void coefficient. Thermal-hydraulic analysis results show the possibility to operate the reactors up to the end of life without changing their orifice pattern, necessary pumping power for the proposed design smaller than the conventional large sodium cooled FBR, and the natural circulation contribution of 25–40% at the normal operating condition. The reactivity feedback coefficients are also estimated and appeared to be negative for all the components including the coolant density coefficient.  相似文献   

18.
Significant amount of plutonium have been discharged and accumulated from the conventional LWRs and CANDU reactors. Reducing this reactor grade (RG) plutonium is very important because it may be misused and/or released accidentally into the environment. Fusion-fission (hybrid) reactors have strong potential on burning plutonium effectively. This study presents the burning of RG plutonium mixed with thorium in a hybrid reactor for an operation period of 24 months. The effect of various fuel mixtures (98% ThO2 + 2% RG-PuO2, 94% ThO2 + 6% RG-PuO2 and 90% ThO2 + 10% RG-PuO2) and coolants (Flinabe, natural lithium and Li20Sn80) on the reactor’s performance was investigated. Numerical results showed that utilization of RG plutonium in the mixed fuel in such a hybrid reactor not only enhanced the reactor’s performance but also reduced its 239Pu content significantly.  相似文献   

19.
University of Tokyo research reactor “YAYOI” is intended to be operated as a dynamic fast neutron source reactor as well as a stationary one. It is equipped with reactivity adding devices with both slow and quick action, and a LINAC PNS (Pulsed Neutron Source) to be operated with the devices mentioned above. The unique idea of fly-through type pulse reactivity addition into the core lends itself to minimizing thermal shock problems pertaining to fast burst reactors thereby increasing safety of a single shot type burst reactor.

Operational experiences of YAYOI obtained during the dynamic testing of super critical state are described here with some explanation of design aspects of YAYOI as a fast pulsed reactor.

Throughout present experiments, the super prompt critical state reactivity of about up to 29 cents was realized for YAYOI core, and it was confirmed that the sizes of pulse power were well controllable with this reactivity pulser (R-P) mode pulse operation.  相似文献   

20.
The reactivity worth of 22.87 grams of 237Np oxide sample was measured and analyzed in seven uranium cores in the Tank-Type Critical Assembly (TCA) and two uranium cores in the Fast Critical Assembly (FCA) at the Japan Atomic Energy Agency. The TCA cores provided a systematic variation in the neutron spectrum between the thermal and resonance energy regions. The FCA cores, XXI and XXV, provided a hard neutron spectrum of the fast reactor and a soft one of the resonance energy region, respectively. Analyses were carried out using the JENDL-3.3 nuclear data library with a Monte Carlo method for the TCA cores and a deterministic method for the FCA cores. The ratios of calculated to experimental (C/E) reactivity worth were between 0.97 and 0.91, and showed no apparent dependence on the neutron spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号