首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
以顺式十氢萘、反式十氢萘、四氢萘、茚满等为氢化芳烃模型化合物,利用高温裂解仪与气相色谱串联装置快速评价了不同结构氢化芳烃的热裂解性能,研究了其热裂解行为。结果表明:热裂解时,十氢萘以开环裂解反应为主,反应温度升高时,其开环裂解反应选择性降低,脱氢反应和氢转移反应增强,反应物原子利用变得不合理;受苯环大π键影响,四氢萘和茚满环烷环上C—H键的键能较低,其脱氢能力与氢转移能力较强,产物以芳烃为主;氢饱和度高的氢化芳烃是生产低碳烯烃的优质原料,含苯环的芳香基氢化芳烃是生产苯、甲苯、二甲苯(BTX)的优质原料。  相似文献   

2.
以四氢萘、茚满、十氢萘和3-乙基甲苯4种加氢催化裂化柴油(LCO)关键组分作为模型化合物,采用小型固定流化床(ACE)装置和Y分子筛催化剂进行了系统的催化裂化反应性能研究。结果表明:在两种转化深度下,模型化合物均表现出其特有的反应特性,四氢萘以发生氢转移反应为主,茚满更倾向于烷基化/烷基转移和脱氢-缩合生成C9+重芳烃,十氢萘虽具有较高的开环-裂化反应选择性,但芳烃产物选择性较低,3-乙基甲苯轻质化效率主要受到异构化反应的影响;高转化深度更有利于模型化合物转化生成轻质芳烃苯、甲苯、乙苯和二甲苯(合称BTEX),四氢萘、茚满、十氢萘和3-乙基甲苯催化裂化反应的BTEX选择性分别为22.65%,19.66%,15.70%,34.36%;四氢萘和茚满容易发生连续的α位C—C键断裂生成苯,十氢萘由于存在两个叔碳正离子更倾向于生成二甲苯,3-乙基甲苯具有较高的甲苯和乙苯选择性。  相似文献   

3.
介绍了一种方便快捷、经济成本低,可将芳烃馏分中的萘系和菲系化合物进行快速分离的小型柱色谱法.通过GC-MS分析检测结果表明,此方法可将芳烃中的萘系和菲系化合物得到分离和纯化富集,解决了总芳烃馏分在气相色谱易出现的UCM鼓包和多取代基萘系物和菲系物的共溢出现象.并通过GC-IRMS分析萘系和菲系化合物中单体烃碳同位素值检测,取得了很好的效果.此方法试剂用量少、分析步骤简单快捷,可用于芳烃馏分单体烃碳同位素分析的前处理中.   相似文献   

4.
分别以1,2,3,4-四氢萘和正二十烷模拟原料油中的芳香分和饱和分,以9-苯基蒽和9-蒽甲醛为煤中多环芳烃的模型化合物,考察了模型化合物组成、反应气氛、铁基催化剂及硫化剂形态等因素对煤 油共炼反应过程的影响,研究了煤-油共炼反应机理。结果表明:铁基催化剂不仅加快了煤的裂解,促进了氢气向活性氢的转变及向煤热解中间产物转移,同时也促进了萘加氢和四氢萘脱氢的氢传递循环供氢能力,加速了氢在整个反应网络中的二次分布;有机硫化物和单质硫在高温、高压条件下均具有良好的硫化能力。氢气转变为活性氢、进行煤液化主要通过两条途径:一是重油中芳香类化合物(如萘等)的加氢;二是氢气在催化剂表面解离吸附。煤-油共炼反应以自由基反应为主,部分碳正离子可能参与反应,形成烷基化及断键重组产物。  相似文献   

5.
考察了加氢裂化催化剂中HY分子筛与金属负载量对其催化1-甲基萘精制油样加氢裂化反应产物的影响。结果表明,在酸性较强的催化剂上甲基四氢萘类反应主要是单分子反应机理,通过异构开环路径生成较大量单环芳烃,同时有一定量BTX化合物生成。HY分子筛质量分数的增加可提高催化剂中中强B酸中心数量,提高四氢萘类异构开环转化成断侧链单环芳烃的选择性;增加催化剂的金属负载量对四氢萘类生成多环烷烃及单环烷烃有利。  相似文献   

6.
四氢萘在分子筛催化剂上环烷环开环反应的研究   总被引:3,自引:0,他引:3  
在小型固定流化床(FFB)装置中考察了Y与ZSM-5分子筛催化剂以及温度、剂油比对四氢萘裂化环烷环开环的影响。结果表明,四氢萘在分子筛催化剂上通过环烷环开环反应生成丙烷、丙烯、丁烷、丁烯、甲基戊烷和环戊烷、环己烷等非芳烃,苯、C1~C4烷基取代苯等单环芳烃;并通过脱氢缩合反应生成萘、甲基萘等双环芳烃,菲、芘等三环以上芳烃甚至焦炭等;其中环烷环开环与脱氢缩合反应的相对比例在两种分子筛上分别为1.22、0.95。由于扩散和吸附性能的影响,其裂化开环反应的选择性在Y分子筛催化剂比ZSM-5分子筛催化剂上高;温度在450~550℃、剂油比在3~9范围,反应温度升高或者剂油比增加,双分子氢转移以及脱氢缩合反应增强,从而导致环烷环开环产物选择性降低。  相似文献   

7.
基于对催化裂化轻循环油(LCO)烃类组成分子水平表征、LCO中稠环芳烃加氢反应规律和加氢LCO中四氢萘类单环芳烃的催化裂化与氢转移反应规律的认识,开发了将LCO高效转化为高辛烷值汽油或轻质芳烃的LTAG技术。LTAG技术是LCO加氢与催化裂化的集成技术,其技术关键是将LCO中稠环芳烃通过选择性加氢饱和反应生成四氢萘类单环芳烃,再通过强化加氢LCO中四氢萘类单环芳烃的催化裂化反应和抑制氢转移反应,实现LCO的高值化利用。加氢单元可采用LCO单独加氢或LCO与蜡油或渣油混合加氢模式;催化裂化单元可采用以下两种模式:①加氢LCO单独催化裂化生产高辛烷值汽油馏分或轻质芳烃;②加氢LCO与重油原料分层顺序进料催化裂化生产高辛烷值汽油馏分。LTAG技术对于炼油企业降低柴汽比、调整产品结构和提升产品质量提供了有力的支撑。该技术既解决了劣质LCO的出路问题,又弥补了市场短缺的高辛烷值汽油馏分或轻质芳烃的不足,具有显著的经济效益,在炼油企业得到广泛的应用。  相似文献   

8.
在小型固定流化床催化裂化试验装置上,考察了十氢萘和四氢萘在酸性催化剂上的裂化反应途径及特征产物。结果表明,初始阶段质子化裂化是四氢萘裂化的主要引发反应,H+攻击C-C键形成五配位正碳离子是十氢萘裂化的主要引发反应;随着反应深度的进行,氢转移反应成为四氢萘的主要反应,而十氢萘裂化生成的烷基环烷正碳离子的β断裂成为十氢萘的主要反应。四氢萘在酸性催化剂上的反应产物中萘、H2和苯的摩尔分数最高,是其反应特征产物;十氢萘在酸性催化剂上的反应产物中异丁烷和汽油异构烷烃组分的摩尔分数最高,是其反应特征产物,为多环环烷烃或氢化芳烃的高效利用提供理论依据。  相似文献   

9.
负氢离子转移反应是氢转移反应的基元反应,促进负氢离子转移反应可以强化选择性氢转移反应。在反应温度510 ℃、剂/油质量比5、质量空速12 h-1、N2气氛条件下,分别考察了四氢萘和十氢萘作为负氢离子释放剂对2-甲基-2-丁烯氢转移反应的影响。结果表明:四氢萘和十氢萘均能有效地促进2-甲基-2-丁烯发生选择性氢转移反应,产物中C5烯烃产率由52.95%最低分别降至37.83%和17.03%,异戊烷产率由17.80%最高分别增加至42.98%和54.58%,焦炭产率由5.28%最低分别降至3.11%和2.85%;且十氢萘比四氢萘具有更好的供氢能力,相同含量的十氢萘对于产物中烯烃产率的降低幅度、异构烷烃产率和选择性的增加幅度的影响均比四氢萘更大,对焦炭产率的抑制作用更强。在含烯烃汽油中分别加入质量分数10%四氢萘和十氢萘后,烯烃产率由11.20%分别降低至5.48%和4.01%;同时能够很好地抑制焦炭的生成,尤其加入十氢萘后焦炭产率由5.30%降到2.82%。  相似文献   

10.
为满足石油产品轻质化和清洁化的要求,催化加氢-催化裂化组合工艺逐渐被炼油厂采用。为探索加氢处理油中氢化芳烃催化裂化的反应规律,以四氢萘和十氢萘作为研究对象,综述了萘不同程度加氢所得的氢化芳烃催化裂化的反应规律,重点分析了四氢萘和十氢萘催化裂化反应机理,分子筛孔道结构、酸性质以及工艺参数对四氢萘和十氢萘催化裂化反应规律的影响。认为具有不同氢饱和度的氢化芳烃的催化裂化反应性能存在较大差异,为灵活调节催化裂解产品结构、最大化目标产物产率,适宜控制并优化催化原料加氢深度是非常必要的。  相似文献   

11.
采用小型固定流化床(ACE)试验装置,在反应温度为460~540℃、质量空速为4~16 h-1范围内研究了模型化合物四氢萘在稀土Y分子筛催化剂(REY-C)和超稳Y分子筛催化剂(USY-C)上催化裂化的反应行为及生焦规律。结果表明:四氢萘在REY-C、USY-C上的裂化产物类型相似,主要生成C3~C5烃以及C6~C10单环芳烃和茚满、甲基茚满、萘等双环芳烃;在REY-C、USY-C上,产物收率由大到小的顺序均为:双环芳烃>单环芳烃>非芳烃;分子筛的酸性强有利于催化裂化反应;焦炭的产率随着反应温度、四氢萘转化率、分子筛酸量的升高而增大,而随着空速的升高而降低。  相似文献   

12.
在含HY分子筛的NiMo加氢裂化催化剂上,采用四氢萘类化合物(简称四氢萘类)及萘类化合物(简称萘类)含量不同的混合物为原料,考察四氢萘类与萘类的混合加氢裂化反应规律,并通过裂化产物中烃类物质的组成计算反应的转化率和选择性。结果表明:在四氢萘类含量相同、萘类含量增大的情况下,萘类转化率下降,四氢萘类开环生成烷基苯的选择性变化不大;在芳烃总量相当、甲基萘比例增大时,对四氢萘类异构开环生成烷基苯的抑制作用较明显。由于多环芳烃在催化剂表面的吸附系数较大,同时占据催化剂的加氢及酸性中心,抑制了四氢萘类的进一步加氢及异构反应,且异构开环反应受影响程度较大。  相似文献   

13.
采用小型固定流化床装置考察了二氢菲、八氢菲和全氢菲在分子筛催化剂上的裂化反应产物,并进行了对比分析。结果表明,在 REUSY 分子筛催化剂上,二氢菲主要发生脱氢缩合反应,生成菲、芘等三环以上多环芳烃甚至焦炭,并阻碍了作为溶剂的正庚烷的裂化;八氢菲、全氢菲主要发生环烷环开环反应,八氢菲的环烷环开环反应产物中乙烯、丙烯、丁烯等 C2~C4烃以及烷基苯的氢转移反应产物萘、烷基萘等 C10烃的收率较高,全氢菲的环烷环开环反应产物中环己烷、烷基苯等汽油组分烃的收率较高;另外,较少量的八氢菲、全氢菲通过脱氢缩合生成菲、芘等三环以上多环芳烃甚至焦炭。氢化菲氢化程度越高越容易发生环烷环开环反应,氢化程度越低越容易发生脱氢反应生成三环以上多环芳烃和焦炭,且氢化程度过低还会抑制饱和烃的裂化。  相似文献   

14.
使用了一种易于操作、成本低的小型柱色谱法将原油中萘系和菲系化合物快速分离的技术。色谱质谱检测结果表明,该技术能使原油中萘系和菲系化合物得到完整的分离和纯化富集,达到了芳烃单体烃在色谱-同位素质谱(GC-IRMS)中分析的要求,为测定芳烃单体烃同位素值提供一种较为可靠的前处理方法。  相似文献   

15.
NiMo加氢催化剂上1-甲基萘的饱和反应规律   总被引:1,自引:0,他引:1  
 以NiMo/Al2O3为催化剂,1-甲基萘作为加氢反应的模型化合物,在高压加氢微反装置上考察了不同温度、压力下的反应规律,并利用Material studio模拟计算得出加氢反应过程中的反应自由能(ΔG),得到了1-甲基萘加氢饱和的热力学反应网络和双环芳烃部分加氢生成甲基四氢萘较优的工艺条件。结果表明,在温度360℃、氢分压4.0 MPa下,1-甲基萘加氢饱和生成甲基四氢萘的选择性高达98.3%以上;适当增加氢分压对1-甲基萘加氢生成四氢萘类有利,而过高压力和温度会降低生成四氢萘类的选择性;热力学反应网络表明,生成四氢萘类的反应自由能要远低于进一步生成十氢萘的自由能,同时加氢优先发生在无烷基取代的芳环上,在压力为3.0~4.5 MPa、温度为330~370℃条件下,产物中5-甲基四氢萘与1-甲基四氢萘的质量分数比均接近2。  相似文献   

16.
从分析LCO化学组成入手,提出了LCO加氢与催化裂化组合生产高辛烷值汽油或轻质芳烃的技术——LTAG技术。在该技术中,加氢单元需进行选择性加氢控制,即双环芳烃选择性加氢饱和生成四氢萘型单环芳烃;催化单元要实现选择性裂化,即选择性强化四氢萘型单环芳烃开环裂化反应,抑制氢转移反应。工业应用结果表明,LTAG技术中加氢LCO转化率大于70%,汽油选择性接近80%,汽油辛烷值提高。  相似文献   

17.
供氢溶剂对稠环芳烃氢化和α,ω-二芳基烷烃热裂化的影响   总被引:3,自引:0,他引:3  
选择5种稠环芳烃作为重质矿物燃料中芳烃的模型化合物,分别以强供氢体四氢萘或弱供氢体十氢萘为溶剂,考察了它们在300-425℃时的氢转移,同时还考察了400℃时不同供氢溶剂对6种α,ω-二芳基烷烃热裂化反应的影响,结果表明,氢转移不仅和溶剂的供氢能力有关,也受到芳烃受氢能力的影响,可以根据芳烃分子的超离域性(S^(R))判断这种影响,烷基桥联结构的碳原子数目和芳香环本身作为内在因素影响着桥联结构中C-C键的热裂化,强供氢体四氢萘并不能促进α,ω-二芳基烷烃的热裂化,反而明显抑制了1,3-二芳基丙烷中烷基桥联结构的断裂。  相似文献   

18.
基于气相色谱-质谱(GC-MS)测定催化裂化柴油(LCO)及其加氢产物中芳烃的组成。根据色谱保留时间和质谱断裂特征,分析了LCO及其加氢产物中芳烃的类型与结构,并对C9~C11的CnH2n-8类及CnH2n-12类芳烃进行了分子结构鉴别。结果表明:CnH2n-8类芳烃在LCO中为具有五元环结构的茚满类,在加氢产物中既有四氢萘类,也有茚满类,后者可由前者发生异构化反应生成;CnH2n-10类芳烃在LCO中是以含有双键的环烷芳烃为主,如茚类、二氢萘类,在加氢产物中则是以含有饱和环结构的芳烃,如二环烷基苯类为主;LCO及其加氢产物中的CnH2n-16类芳烃均为芴类;萘类侧链的碳数、个数与位置均会影响其加氢转化率。此研究可为芳烃的选择性加氢以及后续加工提供信息。  相似文献   

19.
以四氢萘、1-甲基萘及十六烯等模型化合物为主,考察了不饱和烃类在氧化过程中氢化氧化物含量的变化,并对最终氧化产物进行了GC/MS分析。结果表明,萘满类非常活泼,很容易被氧化产生氢过氧化物及其它含氧化合物。四氢萘通空气氧化30h后,体系中氢过氧化物的含量达5.01%,最终氧化产物有1-四氢萘醇、1-四氢萘酮及四氢萘-1-酮-4-醇等;1-甲基萘的氧化产物主要是1-萘甲醇和1-萘甲醛;十六烯的氧化产物主要是长碳链醛及环氧化合物等。四氢萘与十六烯共存在协同氧化作用,使体系中的氢过氧化物含量在16h高达4.64%,氧化深度增大。  相似文献   

20.
加氢处理油中含有一定量的环烷基单环芳烃,研究四氢萘催化裂化有利于加强对更多环数环烷基单环芳烃催化裂化的认识。综述了四氢萘催化裂化过程的反应机理,认为四氢萘主要遵循单分子裂化机理;从反应活化能、扩散、吸附等动力学角度对四氢萘裂解行为进行了解释;催化剂适宜的孔径和BrØnsted酸强度有利于四氢萘开环;随着反应温度升高、剂/油质量比增大、质量空速减小,四氢萘反应活性增强,同时氢转移反应愈发明显。适宜的催化剂孔径和Brnsted酸强度、反应温度、剂/油质量比以及质量空速有利于四氢萘裂化生成低碳烯烃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号