首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
通过简单的石墨相氮化碳(g-C_3N_4)纳米片自组装沉积法,制备了g-C_3N_4包裹的SnO_2-TiO_2纳米复合材料.扫描电子显微镜观察显示,g-C_3N_4均匀地包裹在SnO_2-TiO_2纳米颗粒上.SnO_2-TiO_2-C_3N_4纳米复合材料被用作锂离子电池的负极材料,在0.2C的倍率下循环20次后,比容量达到380.2mA·h·g~(-1),明显高于未经g-C_3N_4包裹的纯的SnO_2(51.6mA·h·g~(-1))和SnO_2-TiO_2纳米复合材料.在0.1~0.5C的倍率充放电测试中,SnO_2-TiO_2-C_3N_4纳米复合材料的比容量仅从490mA·h·g~(-1)衰减到330mA·h·g~(-1),高倍率下抗衰减性能优于同类材料.材料优异的电化学性能归功于g-C_3N_4的包裹处理,这不仅增强了固体电解质界面(SEI)的稳定性,也抑制了锂离子嵌入-脱出时SnO_2和TiO_2纳米颗粒的体积变化.  相似文献   

2.
磁性介孔碳复合材料兼具介孔碳材料和磁性材料的双重优势,不仅具备较高的比表面积、均一的孔径分布和环境友好等特点,而且还具有良好的磁性分离特性.首先介绍了介孔碳和磁性纳米粒子常见的制备方法,在此基础上重点综述了磁性介孔碳复合材料的制备方法,并比较了各种方法的优缺点,对磁性介孔碳复合材料在生物医药、催化和污水处理等领域的最新应用进行了概述,并展望了其未来的发展趋势.同时,探讨了环境友好的绿色合成路线在磁性介孔碳复合材料方面的优势和挑战.  相似文献   

3.
由于MoS_2纳米片具有许多优异的特性,逐渐受到研究者的重视。以Ag纳米粒子分散液和MoS_2纳米片悬浊液为前驱物,在室温下将其充分混合、搅拌和放置,制得了由Ag连接的MoS_2多孔复合材料(Ag-MoS_2)。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、拉曼光谱及比表面积测试等各种测试技术,对该材料进行了系统表征。结果表明,MoS_2纳米片较容易与Ag纳米粒子相互复合,形成三维多孔无机纳米复合材料。与由MoS_2纳米片所形成的多孔材料相比,该复合材料具有相对更大的比表面积和孔体积,其值分别为18.7 m~2·g~(-1)和0.129 m~3·g~(-1);由于在MoS_2纳米片中加入Ag纳米粒子,其比表面积和孔体积分别增大了34倍和62倍。这种材料由于在孔道内含有大量S原子,因而较易吸附极性有机分子和过渡金属离子。在对罗丹明B和Cu~(2+)离子的吸附测试结果证实,Ag-MoS_2块材的比容量分别为0.755和0.699 g·g~(-1),具有较好的吸附能力。  相似文献   

4.
采用溶胶-凝胶法制备了具有优良吸附性能的TiN-TiC复合材料。采用X射线衍射仪,热重分析仪,扫描电子显微镜,N_2吸附-脱附仪和元素分析仪对该复合材料进行表征。结果发现,TiN-TiC复合材料具有介孔结构,比表面积为144.9 m~2·g~(-1),平均孔径为7.44 nm。基于以上特性,研究了TiN-TiC复合材料对水中Cr(Ⅵ)的吸附能力。结果表明,在吸附温度为30℃、吸附时间为240 min、初始Cr(Ⅵ)质量浓度为100 mg·L~(-1)、吸附剂投加量0.34 g·L~(-1)的条件下,TiN-TiC复合材料对Cr(Ⅵ)的吸附量为284.45 mg·g-1。研究了相应的准一级、准二级动力学方程,结果表明,此复合材料对Cr(Ⅵ)的吸附动力学数据与准二级动力学方程有更好的相关性。  相似文献   

5.
以硝酸铈为前驱物,以尿素为助剂,采用一种简单的模板法合成了介孔氮掺杂CeO_2材料.利用X射线衍射仪(XRD)、吸附-脱附仪(BET)、透射电子显微镜(TEM)和傅里叶变换红外光谱(FT-IR)等设备对合成材料进行表征.多种测试结果证明:试验得到的纳米材料具有均一的介孔结构和较高的比表面积(124.8 m~2·g~(-1))并掺杂了氮元素.同时,测定了介孔CeO_2材料对于CO_2的吸附性能,并研究了氮掺杂对CeO_2材料的CO_2吸附性能的影响.结果表明:相比未掺杂氮的介孔CeO_2,氮掺杂的介孔CeO_2具有更好的CO_2吸附性能和循环吸附脱附性能.  相似文献   

6.
铁氧化物锂离子电池负极材料具有比容量高、资源丰富、价格便宜和环境友好等优势,是目前高容量负极材料的研究热点之一.然而,铁氧化物负极材料巨大的体积效应、较差的循环性能以及大的首次可逆容量损失,影响了其在锂离子电池中的应用.目前研究最多的铁氧化物负极材料是α-Fe_2O_3和Fe_3O_4,理论容量分别为1 007 mA·h·g~(-1)和924 mA·h·g~(-1).关于其电化学性能的改进方法,包括制备不同形貌与尺寸的纳米结构材料以及铁氧化物/碳纳米复合材料.介绍了铁氧化物锂离子电池负极材料的储锂机理及其存在的问题,综述了各类铁氧化物负极材料的制备方法、影响因素及电化学性能,并对铁氧化物负极材料的进一步研究、发展应用予以展望.  相似文献   

7.
通过溶胶凝胶燃烧法制备了钴铁氧体(CoFe_2O_4)纳米颗粒,并通过压片退火成型.XRD图谱显示样品成分无杂相.通过介电测试仪和振动样品磁强计测试了样品在室温下的介电性能和磁性能.试验结果表明,其介电常数和损耗都随着频率的变化而变化并展现出频散的行为,在低频范围内随着频率的增加而急剧减小,在高频范围内减小不明显.此外,其磁滞回线显示该类材料的饱和磁化强度、剩余磁化强度和矫顽力场分别为81.8emu·g~(-1),29.4emu·g~(-1)和834.9Oe.样品展现出良好的磁性能.  相似文献   

8.
通过简单的固相法和液相法,分别制备出石墨相氮化碳(g-C_3N_4)表面改性的商品化LiCoO_2复合材料,采用扫描电子显微镜观察改性后的材料,发现g-C_3N_4都均匀地包裹在LiCoO_2表面。两种g-C_3N_4-LiCoO_2复合材料被用作锂离子电池的正极材料,电化学测试结果显示,固相法制得的g-C_3N_4-LiCoO_2复合材料在0.2C的倍率下充放电测试,首次比容量达167mA·h·g~(-1),循环80次后,比容量仍达132mA·h·g~(-1),高于未经g-C_3N_4包裹的纯LiCoO_2(98mA·h·g~(-1));液相法制得的Y-C_3N_4-LiCoO_2复合材料循环稳定性明显优于同类材料,循环80次后容量保持率均在95%以上。试验证实,g-C_3N_4表面改性的策略具有一定的实用价值,改性后,材料优异的电化学性能归因于g-C_3N_4的包裹处理,这不仅增强了固体电解质界面(SEI)的稳定性,也抑制了锂离子嵌入/脱出电极材料时引起LiCoO_2体积的变化。  相似文献   

9.
本文制备纳米SiC基体改性的SiC-C/C复合材料,利用X射线衍射技术、高分辨率透射电镜等研究SiC对碳材料的石墨化度的影响.纳米SiC能够显著促进碳基体材料的石墨化度,同时通过高分辨率透射电镜在纳米SiC颗粒周围观测到明显的石墨化结构,并且距离SiC越近,碳基体的石墨化程度越高.通过静态氧化实验研究SiC-C/C复合材料的抗氧化性能.结果表明,随着SiC加入量的增加复合材料的抗氧化性显著提高,纳米SiC在高温下生成较为均匀的SiO2保护层,覆盖在碳材料的表面,阻碍氧气与碳材料的接触,并且SiC含量越高,形成的保护层越厚,抗氧化能力越强.   相似文献   

10.
环境中化石燃料的大量使用导致CO_2浓度不断增加,这是全球变暖的主要原因。为了解决这一问题,开发一种高效廉价的吸附材料至关重要。以甘蔗渣为碳源,尿素为N源,通过碳化和K_2CO_3活化制备出N掺杂多孔碳。多孔碳的物理化学性质用N_2解吸等温线、傅里叶红外光谱、元素分析、扫描电子显微镜观察和X射线衍射等方法进行表征。结果表明:该材料具有高度发达的孔隙、较高的N含量和较高的石墨化程度。当尿素与甘蔗渣混合比是2、碳化温度是800℃、K_2CO_3浸渍比是3时,多孔碳的比表面积高达2 486.67 m~2·g~(-1),同时CO_2吸附量高达250.73 mg·g~(-1)。由此可见以廉价的甘蔗渣制备N掺杂的多孔碳用于吸附CO_2具有广阔的应用前景。  相似文献   

11.
采用真空气雾化与高能机械球磨法结合,制备SnCoC复合材料作为锂离子电池负极材料,操作简单,时间短,易于实现工业化.采用X射线衍射(XRD)和扫描电子显微镜(SEM)检测合金粉末及复合材料的相结构和表面形貌,结果发现碳的引入不会对合金相结构产生影响,它以无定形碳形式存在,随着球磨时间的增加,合金由晶态向非晶态转变,且颗粒变得均匀,部分颗粒尺寸甚至达到纳米级.将制得材料组装成模拟电池,测试其电化学特性,结果表明:球磨20h的Sn-Co合金比未球磨的合金负极的比容量高且循环更稳定,而将台金与石墨球磨后,所得复合材料的电化学性能进一步提高,首次库仑效率最高达90.6%,50次循环后容量保持率66.7%.分析可知:通过将锡钴合金弥散在无定形碳中,获得非晶纳米晶双相结构的SnCoC复合材料.非晶材料的各向同性,能够缓冲Li-Sn在合金化-去合金化过程中产生的结构和电场应力;纳米级尺寸的材料内部空隙多,有利于锂离子的扩散;碳材料除了稳定的结构外还可以提供一定的容量.这些有利因素结合起来,极大改善了材料的电化学性能.  相似文献   

12.
氮化钛(TiN)因其具有资源丰富、无毒、低成本和高化学稳定性等特点,可作为一种新型、高容量的锂离子电池负极材料。而其较差的离子和电子传导率无法满足高能量密度锂离子电池的需求。因此,本论文通过设计制备出氮掺杂碳材料负载钴(5%)掺杂TiN纳米颗粒(Ti0.95Co0.05N/NC),通过调节二聚氰胺(DCDA)加入量调控碳材料的石墨化程度,优化孔结构及其电导率。其中Ti0.95Co0.05N/NC-1具有较高的比容量,在100 mA·g-1电流密度下循环120圈后,比容量仍然高于530 mAh·g-1。  相似文献   

13.
随着电动汽车的发展,迫切需要具有高安全性、高能量密度、高功率、大容量、长寿命、高环保、低成本等优点的锂离子电池。层状结构的富锂锰基正极材料由于具有比容量高、平台电压高、热稳定性好、价格低廉的特点而被认为是有希望的未来电动汽车候选正极材料之一。尽管其拥有很高的比容量,但仍存在着首次循环不可逆容量高、倍率性能差等问题,纳米化是改进材料倍率性能的一种有效手段。本文以Ni O,Co_3O_4,Mn CO_3和Li_2CO_3为原料,成功制备得到了纳米级的锂离子电池正极材料Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和充放电测试对所得样品的结构、形貌及电化学性能进行了表征。结果表明,合成的Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2材料具有层状结构,一次颗粒均匀、细小,平均颗粒尺寸约为90 nm,并具有良好的电化学性能,在2.0~4.8 V以0.1C充放电时,首次放电比容量达到284 m Ah·g~(-1),首次库伦效率为86.1%。材料同时拥有良好的倍率性能,1.0C放电容量达到240 m Ah·g~(-1),3.0C放电容量达到210 m Ah·g~(-1)。  相似文献   

14.
以聚乙二醇(PEG)为模板剂、正硅酸乙酯(TEOS)为硅源,采用溶胶-凝胶法合成了铜掺杂介孔硅铝氧化物复合材料,并通过N2等温吸附-脱附法、X射线衍射、红外光谱等测试对产物进行表征,考察了PEG质量、分子量以及CuO掺杂量对复合材料孔结构的影响.结果表明:加入PEG能够明显增加复合材料的比表面积,随PEG质量增大,介孔孔容增多,孔径分布较均匀,加入24g PEG时比表面积增加一倍达到约500m2·g-1.PEG的分子量为600~2 000时样品以4 nm介孔为主,而分子量为10 000时,样品以小于2 nm的微孔为主.  相似文献   

15.
应用辊压快冷及可控结晶技术制备了玻璃陶瓷(SrNb2O6-NaNbO3-SiO2)纳米介电复合材料。研究了该复合材料的制备工艺参数与显微组织特性以及介电性能的关系,重点关注该材料的抗电击穿性能。X射线衍射(XRD)和扫描电镜(SEM)的分析结果显示,高温熔体经辊压快冷后得到典型的玻璃块体,在随后的可控结晶过程中,当温度高于750℃时,在玻璃基体中逐步析出具有高介电常数的纳米SrNb2O6和NaNbO3颗粒。当晶化温度为900℃时,析出相的平均尺寸约为28 nm。分析测试了该类材料介电常数的温谱特性和频谱特性。结果表明,该介电复合材料具有适宜的温谱和频谱特性。在100 Hz~1 MHz测试频率和-55~125℃测试范围内,该类材料均表现出极佳的稳定性(5%)。与此同时,基于其特有的低孔隙率和纳米晶粒度的特点,该类复合材料的抗电击穿能力亦很突出。在700℃结晶化处理的样品的电击穿强度高达120 kV.mm-1。  相似文献   

16.
三元正极材料具有优异的电化学性能,但也存在阳离子混排、压实密度不高、充放电效率较低、倍率性能不理想、高温存储和循环性不好等问题。为改善LiNi_(0.8)Co_(0.15)Al_(0.05)O_2的电化学性能,采用固相法制备了碳包覆的LiNi_(0.8)Co_(0.15)Al_(0.05)O_2/C复合材料,并讨论了包覆质量比分别为1.02%,2.01%和2.97%(质量分数)时对材料的结构、形貌和电化学性质的影响。X射线衍射(XRD)和扫描电镜(SEM)测试结果显示:所有样品均为α-NaFeO2六方层状结构,具有类球形形貌。电化学测试结果表明:包覆量为2.01%时材料的综合性能最好,0.1C首次放电比容量达175.5 mAh·g~(-1),未包覆的材料为158.9 mAh·g~(-1),包覆后比纯相LiNi_(0.8)Co_(0.15)Al_(0.05)O_2提高了10.5%;3.0C进行50次循环,容量保持率为88.2%,而未经碳包覆的材料只有75.6%;锂离子的扩散系数由未包覆时的2.05×10~(-13)cm~2·s~(-1)增大到3.76×10~(-12)cm~2·s~(-1),相应的电荷的转移阻抗由79.4Ω减小到53.6Ω。  相似文献   

17.
安富强  何冬林  庞铮  李平 《工程科学学报》2019,41(10):1307-1314
以沥青为软碳原料,商业石墨的载体材料,通过高温热解法成功合成了硅/石墨/碳复合材料,同时原位生成了微米尺度的碳纤维.该硅/石墨/碳复合材料具有诸多优点,石墨片层堆叠之间的空隙为硅的体积膨胀提供了有效的空间,沥青热解碳材料的包覆能一定程度抑制硅基材料的体积效应和提高其电子电导率,同时微米级的碳纤维能提高材料的长程导电性和结构稳定性,从而极大的改善负极材料循环性能.通过电化学测试表明,硅/石墨/碳复合材料中硅/石墨/碳复合负极材料在200 mA·g-1电流密度下具有650 mA·h·g-1的可逆容量,在200 mA·g-1电流密度下经过500圈循环后容量保持率为92.8%,每圈的容量衰减率仅为0.014%,展现了优异的循环性能.   相似文献   

18.
以高导热片状石墨和铝粉为原料,通过放电等离子烧结法(SPS)制备高导热片状石墨/铝复合材料。使用金相显微镜(OM)、扫描电子显微镜(SEM)和X射线衍射仪(XRD)对高导热片状石墨/铝复合材料的显微结构和成分进行了表征,观察了复合材料的界面结合状况,分析了烧结温度和烧结压力对复合材料致密化的影响,研究了复合材料中石墨含量对复合材料热导率的影响。研究表明,片状石墨和铝界面结合良好,没有生成界面产物Al4C3。适当的提高烧结温度和烧结压力有利于促进复合材料的致密化,过高的烧结温度容易造成铝液的溢出。当烧结压力为40 MPa,烧结温度为580℃时,高导热片状石墨/铝复合材料的致密度能达到99.7%。当复合材料中石墨含量为60%时,高导热片状石墨/铝复合材料的面向热导率能达到440 W·m-1·K-1,很好地满足了现代社会对电子封装材料的散热要求。  相似文献   

19.
通过机械合金化制备Cu-5 %C合金粉,并采用粉末冶金工艺制备铜碳合金增强铜-石墨复合材料即Cu-(Cu-5%C)-C,研究了制粉工艺和Cu-5%C合金粉对该复合材料显微组织及物理性能的影响.结果表明:随着球磨时间的增加,合金粉中铜的晶格常数先增大后减小,衍射峰强度不断降低,半高宽逐渐增大;球磨40 h后合金粉中的石墨衍射峰消失,再经400℃退火3h则球磨产生的次生相Cu2O衍射峰消失,且石墨峰未复现.当石墨含量为4%,合金碳含量不超过1.5%时,Cu-(Cu-5 %C)-C复合材料试样的电导率均达61% IACS以上;当合金碳含量为1.0%时,复合材料的屈服强度显著提高;当合金碳含量达到1.5%时,复合材料中的合金相严重分解,其增强效果大为减弱.  相似文献   

20.
以乙二醇和水为溶剂,使用无模板溶剂热法在160℃的条件下制备了前驱体,将前驱体在500℃的空气中焙烧1 h得到纳米二氧化铈空心球。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)研究了所制备的前驱体和二氧化铈空心球试样的物理化学性质。焙烧后试样保持前驱体的空心球形貌,其直径约为300~400 nm,球壳厚度约为35 nm,球壳上分布有蠕虫状小孔。还讨论了溶剂热过程中所发生的化学反应和焙烧过程中发生的转化,研究了纳米二氧化铈空心球的形成机制。测试了二氧化铈空心球的N2吸附-脱附平衡,通过计算得到其比表面积为71.984 m~2·g~(-1),远高于商用二氧化铈比表面积3.954 m~2·g~(-1)。研究了试样对酸性橙7的吸附活性,其在实验条件下对酸性橙7的最终吸附量可达22.8 mg·g~(-1),去除率可达99.8%,远高于商用二氧化铈对酸性橙7的去除率24.3%。同时,研究了试样对酸性橙7吸附过程的动力学,其很好地符合准二级动力学过程,拟合线性系数为R~2=0.99984,且通过计算其对酸性橙7的平衡吸附量为25 mg·g~(-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号