首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
陷光探测器偏振响应特性的研究   总被引:2,自引:0,他引:2  
偏振响应特性是反映光探测器质量的重要参数。陷光探测器(陷光二极管)是低温辐射计的传递探测器。中对陷光探测器的偏振响应特性进行了测量研究,并提出了对它的数值表述方法。探测器偏振响应特性的测量结果的不确定度达到0.005%。测量结果表明,不同的反射型陷光探测器的偏振响应特性相差很大,在光辐射测量中不容忽视。  相似文献   

2.
A filter radiometer was designed to use for the realization of optical radiometric scales with high accuracy at the Ulusal Metroloji Enstitüsü, Turkey. The primary aim in developing the new filter radiometer is to improve the traceability and accuracy of radiometric quantities of the Système International (d’unités) (SI units). This filter radiometer basically consists of a trap detector, a set of temperature-controlled filters and a precision aperture. Complete characterization of the radiometer is described in this paper. The absolute calibration of the filter radiometer is performed by using an electrical substitution cryogenic radiometer at discrete laser lines with a relative uncertainty of the order of 0.01%.  相似文献   

3.
The combination of a cryogenic radiometer and synchrotron radiation enables detector scale realization in spectral regions that are otherwise difficult to access. Cryogenic radiometry is the most accurate primary detector-based standard available to date, and synchrotron radiation gives a unique broadband and continuous spectrum that extends from x ray to far IR. We describe a new cryogenic radiometer-based UV radiometry facility at the Synchrotron Ultraviolet Radiation Facility II at the National Institute of Standards and Technology. The facility is designed to perform a variety of detector and optical materials characterizations. The facility combines a high-throughput, normal incidence monochromator with an absolute cryogenic radiometer optimized for UV measurements to provide absolute radiometric measurements in the spectral range from 125 nm to approximately 320 nm. We discuss results on photodetector characterizations, including absolute spectroradiometric calibration, spatial responsivity mapping, spectroreflectance, and internal quantum efficiency. In addition, such characterizations are used to study UV radiation damage in photodetectors that can shed light on the mechanism of the damage process. Examples are also given for UV optical materials characterization.  相似文献   

4.
Uncertainties in the NIST spectral standards for detectors and sources in the visible wavelength range are propagated from the high accuracy cryogenic radiometer measurements, taking correlations into account at every stage. Partial correlations between spectral values at different wavelengths, important for subsequent radiometric calculations, are estimated. Uncertainty propagation through fitting and through transfer spectral measurements is described in detail. Detector uncertainties are propagated through the spectral comparator facility for external calibrations and for internal photometric quantities. Uncertainties in spectral irradiance are derived for the detector-based temperature determination, then propagated through working standards to calibrated artifacts. Spectral irradiance calibrations are generally provided at a limited number of wavelengths. Interpolation, rather than fitting, is recommended for the interpolation of NIST-provided spectral irradiance values.  相似文献   

5.
6.
The responsivity of two optical detectors was determined by the method of direct substitution in four different NIST measurement facilities. The measurements were intended to demonstrate the determination of absolute responsivity as provided by NIST calibration services at laser and optical-communication wavelengths; nominally 633 nm, 850 nm, 1060 nm, 1310 nm, and 1550 nm. The optical detectors have been designated as checks standards for the purpose of routine intramural comparison of our calibration services and to meet requirements of the NIST quality system, based on ISO 17025. The check standards are two optical-trap detectors, one based on silicon and the other on indium gallium arsenide photodiodes. The four measurement services are based on: (1) the laser optimized cryogenic radiometer (LOCR) and free field collimated laser light; (2) the C-series isoperibol calorimeter and free-field collimated laser light; (3) the electrically calibrated pyroelectric radiometer and fiber-coupled laser light; (4) the pyroelectric wedge trap detector, which measures light from a lamp source and monochromator. The results indicate that the responsivity of the check standards, as determined independently using the four services, agree to within the published expanded uncertainty ranging from approximately 0.02 % to 1.24 %.  相似文献   

7.
张磊  郑小兵  林志强  王骥  刘昌锦 《光电工程》2007,34(2):45-49,54
从红外遥感信息定量化的发展要求出发,分析了测辐射热计、热电堆探测器和热释电探测器的响应特性,选择薄膜热电堆探测器TS-76作为传递标准探测器.搭建高精度光谱响应率定标系统,使用宽波段可调谐激光器和绝对低温辐射计对TS-76探测器的线性、空间均匀性以及重复性进行了标定.按照国际通用不确定度评估规范,对光谱响应率测量结果进行不确定度分析和评估,联合不确定度小于1.5%,并根据实验结果提出实现高精度中远红外辐射定标的技术方案,证明基于热电堆探测器的红外辐射定标技术可以有效缩短标准传递的链路,提高定标的精度.  相似文献   

8.
The Low Background Infrared calibration (LBIR) facility at the National Institute of Standards and Technology (NIST) presently maintains four absolute cryogenic radiometers (ACRs) which serve as standard reference detectors for infrared calibrations performed by the facility. The primary standard for optical power measurements at NIST-Gaithersburg has been the High Accuracy Cryogenic Radiometer (HACR). Recently, an improved radiometer, the Primary Optical Watt Radiometer (POWR), has replaced the HACR as the primary standard. In this paper, we present the results of comparisons between the radiometric powers measured by the four ACRs presently maintained by the LBIR facility to that measured by the HACR and POWR. This was done by using a Si photodiode light-trapping detector as a secondary transfer standard to compare the primary national standards to the ACRs maintained by the LBIR facility. The technique used to compare an ACR to the trap detector is described in detail. The absolute optical power measurements are found to be within 0.1 % of the primary standard for all the ACRs examined in this study.  相似文献   

9.
A high-accuracy cryogenic radiometer has been developed at the National Institute of Standards and Technology to serve as a primary standard for optical power measurements. This instrument is an electrical-substitution radiometer that can be operated at cryogenic temperatures to achieve a relative standard uncertainty of 0.021% at an optical power level of 0.8 mW. The construction and operation of the high-accuracy cryogenic radiometer and the uncertainties in optical power measurements are detailed.  相似文献   

10.
The National Institute of Standards and Technology (NIST) is establishing an infrared detector calibration facility to improve radiometric standards at infrared wavelengths. The absolute response of the cryogenic bolometer that serves as the transfer standard for this facility is being linked to the NIST high- accuracy cryogenic radiometer (HACR) at a few laser wavelengths. At the 10.6-microm CO(2) laser line, this link is being established through a pyroelectric detector that has been calibrated against the HACR. We describe the apparatus, methods, and uncertainties for the calibration of this pyroelectric detector.  相似文献   

11.
基于探测器的成象光谱仪绝对辐射定标方法   总被引:1,自引:0,他引:1  
用一组窄带滤光片、简易辐亮度计和硅光二极管探测器设计了绝对型光谱辐亮度计。精确测量滤光片的光谱透过函数,计算辐亮度计的视场,标定探测器的绝对光谱响应度,成为绝对光谱辐亮度计,用来标定成象光谱和其它光学遥感器,并与基于光谱辐照度灯进行辐射定标的传统方法进行了比较。结果表明,基于探测器进行辐射定标的方法是一种提高光学遥感器定标精度的途径,而且是佐证其它定标方法可靠性的一种手段。  相似文献   

12.
The non-contact measurement of temperature by using the emitted thermal radiation has been an innovative field of measurement science and fundamental physics for more than a hundred years. It saw the first highlight in Gustav Kirchhoff’s principle of a blackbody with ideal emission characteristics and culminated in Max Planck’s formulation of the law of thermal radiation, the so-called Planck’s law, forming the foundation of quantum physics. A boost in accuracy was the development of semiconductor detectors and the cryogenic electrical substitution radiometer in the late 1970s. Semiconductor detectors, namely photodiodes, deliver an electrical current proportional to the absorbed optical radiation. Due to the measurements of thermal radiation over a wide range of temperature and wavelength, thermodynamic temperature measurements with radiometric methods have set benchmarks to all, the electrical, dimensional and optical metrology. The paper describes the measurement of the spectral responsivity of semiconductor detectors traceable to the SI units and their application for thermodynamic temperature measurement by the absolute measurement of thermal radiation using filter radiometers with calibrated spectral irradiance responsivity.  相似文献   

13.
A cryogenic radiometer with electrical substitution has been developed for precise photometric measurements. The radiometer design and specifications are described. The radiometer has an accuracy of 0.02%. Its main use is to calibrate the spectral response of reference radiometers. Translated from Izmeritel'naya Tekhnika, No. 11, pp. 22–25, November, 1996.  相似文献   

14.
低温辐射计是迄今为止国际上公认最精确的光辐射功率测量系统,基于探测器的光辐射量值是可溯源的基本量。低温辐射计是目前国际上公认最准确的光辐射功率测量方法,是基于探测器的光辐射量值溯源源头。为验证不同实验室间的低温辐射计测量量值的一致性,由中国计量科学研究院作为主导实验室组织了此次低温辐射计比对,参比实验室包括中国电子科技集团第四十一研究所与西安应用光学研究所。介绍了比对的基本情况与技术方案,分析了比对结果。比对结果表明,各参比实验室相对于比对参考值的测量偏差在±0.02%之内;尽管各实验室使用的低温辐射计的类型不同以及装置存在差异,比对结果证明了各实验室低温辐射计测量的量值具有较好的一致性。  相似文献   

15.
NIST has recently established a detector-based luminous intensity unit (candela, cd), which is derived from the NIST absolute cryogenic radiometer. Subsequently, the luminous flux unit (lumen, lm) and the luminance unit (cd/m2) have been established based on the detector-based candela, and now all the NIST photometric units are tied to the cryogenic radiometer. The illuminance unit is realized and maintained on five standard photometers. The large dynamic range of the standard photometers eliminates the need for maintaining many working standard lamps of various wattages. The luminous intensities of lamps are determined from the illuminances measured with these photometers and the distances measured with a linear encoder system. Transfer photometers and illuminance meters are calibrated by direct comparison with the standard photometers with no distance measurements involved. The luminous flux unit is realized using an absolute integrating sphere method newly developed at NIST. The luminance unit is realized on an integrating sphere source, which is used for calibration of other luminance sources and luminance meters. These detector-based methods have made it possible to reduce the uncertainties of photometric calibrations and to provide more varieties of photometric calibration services at NIST.  相似文献   

16.
林延东  吕亮 《计量学报》2012,33(6):494-498
基于低温辐射计建立了一系列激光波长上光探测器响应度测量基准。进行了基准装置性能的研究,应用光辐射有效加热功率检验方法进行了不确定度评估。在氦氖、氩氪离子以及钛蓝宝石激光器的10个波长上测量了作为标准探测器的陷阱探测器的响应度。在氦氖、氩氪离子激光波长测量结果的不确定度达到0.8×10-4,在钛蓝宝石激光器达到1.1×10-4。对标准探测器的面响应均匀性、非线性、偏振响应、角度响应等特性对响应度测量结果的影响进行了研究。  相似文献   

17.
A cryogenic radiometer-based system was constructed at the National Institute of Standards and Technology for absolute radiometric measurements to improve detector spectral power responsivity scales in the wavelength range from 900 nm to 1800 nm. In addition to the liquid-helium-cooled cryogenic radiometer, the system consists of a 100 W quartz-tungsten-halogen lamp light source and a 1 m single-grating monochromator for wavelength selection. The system was characterized and the uncertainty in spectral power responsivity measurements evaluated. A variety of photodetectors, including indium gallium arsenide photodiodes (InGaAs), germanium (Ge) photodiodes, and pyroelectric detectors, were subsequently calibrated. Over most of the spectral range, the spectral power responsivity of the photodetectors can be measured with a combined relative standard uncertainty of 0.4 % or less. This is more than a factor of two smaller than our previous capabilities, and represents a significant improvement in the near infrared (NIR) spectral power responsivity scale maintained at NIST. We discuss the characterization of the monochromator-based system and present results of photodetector spectral power responsivity calibrations.  相似文献   

18.
We report a comparison of laser power measurements at the F2-laser wavelength of 157 nm made at two facilities of the Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute. At the PTB laboratory at the electron storage ring BESSY II in Berlin, the scale for laser power was directly traced to a cryogenic radiometer operating at 157 nm, whereas at the PTB laser radiometry facility in Braunschweig the calibration of transfer detectors was performed with a newly developed standard for laser power at 157 nm, which is traceable in several steps to a cryogenic radiometer operating at 633 nm. The comparison was performed under vacuum conditions with laser pulse energies of approximately 10 microJ, however with different average powers because different primary standard radiometers were used. The relative deviation for the responsivity of the transfer detector was 4.8% and thus within the combined standard uncertainty.  相似文献   

19.
A direct spectroradiometric determination of the temperature of freezing gold was performed by measuring the spectral radiances of a gold blackbody relative to those of a laser-irradiated integrating sphere which was calibrated with absolute silicon detectors and an electrically calibrated radiometer. The measurements were performed at three laser wavelengths near 600 nm, and the temperature of the blackbody was calculated by substituting the measured spectral radiances into Planck’s radiation formula. The result obtained, TAu=(1337.33± 0.34) K, is 0.25 K below the gold-point assignment in the International Practical Temperature Scale of 1968 (IPTS-68) and has been adopted in September 1990 as the new gold-point value in the International Temperature Scale of 1990 (ITS-90). The effect of this change in the gold-point assignment on pyrometric, radiometric, and photometric measurement services provided by the National Institute of Standards and Technology is assessed.  相似文献   

20.
A radiometer has been designed for precision colierent radiation measurements and tested for long-term repeatability at wavelengths of 488 and 633 nm. The radiometer consists of a pn silicon photodiode maintained in a nitrogen atmosphere with a quartz window designed to eliminate interference problems. Ratio measurements between the radiometer and an absolute type detector were made over a period of 215 d. At 0.5 mW, the standard deviations were 0.008% and 0.009% at 488 and 633 nm, respectively. The maximum deviations from the mean were 0.016% and 0.015% at the respective wavelengths. Measurements were also made on the radiometer with respect to angular and spatial uniformity and linearity. The high precision, simplicity, and portability of the radiometer suggest it for use as a transfer standard for radiometric measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号