首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Purpose: The purpose of this study is to develop an oral suspension of clindamycin resin complex for the potential use in pediatrics.

Methods: Several types of Ion exchange resins were screened for their binding efficiency with clindamycin. In order to develop a suspension formulation, several thickening agents, surfactants, sweeting, and flavoring agents were evaluated for their influence on the release of clindamycin from resinate. Rheological studies were also conducted to select the optimum amounts of the suspending agents. The release profiles of clindamycin in SGF and SIF were also evaluated from freshly prepared suspension and from suspension formulation after storage for 1 month at 25?°C and 40?°C. Clindamycin bitterness threshold was determined based on volunteers’ evaluation, and taste evaluation was conducted in 12 adult volunteers who evaluated the taste of the optimized suspension against clindamycin solution.

Results: Among all resins tested, Amberlite IRP 69 showed the highest binding efficiency to clindamycin. Several excipients were selected into the suspension formulation based on no or minimum influence on the release of clindamycin from the resinate complex. Moreover, xanthan gum was selected as the optimal suspending agent for the suspension. Clindamycin release profiles in SGF or SIF showed 90% release within 30?min from freshly prepared sample. Clindamycin exhibited good stability profiles at 25?°C and 40?°C over 1 month storage. The mean bitterness threshold of clindamycin was 12.5?μg/ml, and taste evaluation study in adults showed sustainable taste improvement for suspension over clindamycin solution.

Conclusion: Clindamycin/resin complexation has shown to be an efficient method to mask the taste of clindamycin and was developed into a suspension formulation that can be used in pediatrics.  相似文献   

2.
Purpose: To examine effects of polymer types on the mucoadhesive properties of polymer-coated nanostructured lipid carriers (NLCs).

Experiment: Curcumin-loaded NLCs were prepared using a warm microemulsion technique followed by coating particle surface with mucoadhesive polymers: polyethylene glycol400 (PEG400), polyvinyl alcohol (PVA), and chitosan (CS). The physicochemical properties and entrapment efficacy were examined. In vitro mucoadhesive studies were assessed by wash-off test. In addition, the stability of mucoadhesive NLCs in gastrointestinal fluids and the pattern of drug release were also investigated.

Findings: The obtained nanoparticles showed spherical shape with size ranging between 200?nm and 500?nm and zeta potential between ?37 and ?9?mV depending on the type of polymer coating. Up to 80% drug entrapment efficacy was observed. In vitro mucoadhesive studies revealed that PEG-NLCs and PVA-NLCs were adhered strongly to freshly porcine intestinal mucosa, more than 2-fold mucoadhesive compared to CS-NLCs and uncoated-NLCs. The particle size of all polymer-coated NLCs could be maintained in both simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) suggesting good physical stability in physiological fluid. In contrast, uncoated-NLCs showed particle aggregation in SGF. In vitro dissolution studies revealed a fast release characteristic.  相似文献   

3.
Abstract

The aim of this work was to assess the performance of resin as an ocular delivery system. Timolol maleate (TM) was chosen as the model drug and an ion exchange resin (IER) as the carrier. The drug–resin complex was prepared using an oscillation method and then characterized regarding particle size, zeta potential, morphology, and drug content. After in vitro drug release study and corneal permeation study were performed, in vivo studies were performed in New Zealand albino rabbits using a suspension with particles sized 4.8?±?1.2?μm and drug loading at 43.00?±?0.09 %. The results indicate that drug released from the drug–resin ophthalmic suspension permeated the cornea and displayed a sustained-release behavior. Drug levels in the ocular tissues after administration of the drug–resin ophthalmic suspension were significantly higher than after treatment with an eye drop formulation but were lower in body tissues and in the plasma. In conclusion, resins have great potential as effective ocular drug delivery carriers to increase ocular bioavailability of timolol while simultaneously reducing systemic drug absorption.  相似文献   

4.
Abstract

Disopyramide was microencapsulated with cellulose acetate butyrate (CAB) using an emulsion-solvent evaporation process. Drug dissolution from microcapsules was studied in both simulated gastric (SGF) and intestinal fluids (SIF) under sink conditions using the USP paddle method. There was no significant difference between drug release into SIF and SGF. As the CAB to drug ratio decreased from 3:1 to 2:1 at constant polymer mass, the drug release rate increased and the T50Y0 decreased from 2.3 hr to 0.3 hr for 303 pm particles. Dissolution T50% increased from 0.4 hr to 2 hr when the mean microcapsule size was increased from 153 to 428 μm (26% drug loading). The addition of acetone to the external phase during preparation shifted the size distribution toward larger particles, but resulted in a higher drug dissolution rate for a given particle size range. A shift to smaller particles was obtained upon increasing the concentration of surfactant. The dissolution profiles were described by the Higuchi and Baker-Lonsdale equations for drug release from spherical matrices up to 90% of the drug release.  相似文献   

5.
Context: Poor aqueous solubility of artemether and lumefantrine makes it important to seek better ways of enhancing their oral delivery and bioavailability.

Objective: To formulate and carry out in vitro and anti-malarial pharmacodynamic evaluations of solidified reverse micellar solutions (SRMS)-based solid lipid microparticles (SLMs) of artemether and lumefantrine for oral delivery and improved bioavailability.

Materials and methods: Rational blends of Softisan®154 and Phospholipon®90H lipid matrices, and different concentrations of artemether and lumefantrine were used to formulate several batches of SLMs. Drug-free SLMs were also formulated. Morphology, particle size, encapsulation efficiency (EE%) and pH studies were performed. In vitro release studies were performed in alcoholic buffer, simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) without enzymes. Anti-malarial pharmacodynamic studies were conducted in mice.

Results: Stable, smooth and spherical particles with sizes ranging from 4.2?±?0.02 to 9.3?±?0.8?µm were formed. EE% of 92.2–97.3% and 30.2–84.7% and pH of 3.0?±?0.02 to 4.9?±?0.12 and 3.0?±?0.02 to 5.8?±?0.05 were obtained for artemether and lumefantrine SLMs, respectively. Release of 100, 88.28 and 75.49%, as well as 63.26, 34.31 and 56.17% were recorded for artemether and lumefantrine in alcoholic buffer, SGF and SIF, respectively. Pharmacodynamic studies indicated very significant (p?Conclusion: Oral delivery and bioavailability of artemether and lumefantrine could be improved using SRMS-based SLMs.  相似文献   

6.
ABSTRACT

Using ion exchange resins (IERs) as carriers, a dual-drug sustained release suspension containing codeine, and chlorpheniramine had been prepared to elevate drug safety, effectiveness and conformance. The codeine resinate and chlorpheniramine resinate beads were prepared by a batch process and then impregnated with Polyethylene glycol 4000 (PEG 4000), respectively. The PEG impregnated drug resinate beads were coated with ethylcellulose as the coating polymer and di-n-butyl-phthalate as plasticizer in ethanol and methylene chloride mixture by the Wurster process. The coated PEG impregnated drug resinate beads were dispersed in an aqueous suspending vehicle containing 0.5% w/w xanthan gum and 0.5% w/w of hydroxypropylmethylcellulose of nominal viscosity of 4000 cps, obtaining codeine resinate and chlorpheniramine resinate sustained-release suspension (CCSS).

Codeine phosphate and chlorpheniramine maleate were respectively loaded onto AMBERLITE® IRP 69, and PEG 4000 was used to impregnate drug resinate beads to maintain their geometry. Ethylcellulose with di-n-butyl-phthalate in ethanol and methylene chloride mixture for the coating of drug resinate beads was performed in Glatt fluidized bed coater, where the coating solution flow rate was 8–12 g/min, the inlet air temperature was 50–60°C, the outlet air temperature was 32–38°C, the atomizing air pressure was 2.0 bar and the fluidized air pressure was adjusted as required. Few significant agglomeratation of circulating drug resinate beads was observed during the operation. The film weight gained 20% w/w and 15% w/w were suitable for the PEG impregnated codeine resinate and chlorpheniramine resinate beads, respectively. Residual solvent content increased with coating level, but inprocess drying could reduce residual solvent content.

In the present study, the rates of drug release from both drug resinate beads were measured in 0.05M and 0.5M KCl solutions. The increased ionic strength generally accelerated the release rate of both drugs. But the release of codeine from its resinate beads was much more rapid than chloropheneramine released from its resinate beads in the same ionic strength release medium. The drug release specification of the CCSS, where release mediums were 0.05M KCl solution for codeine and 0.5M KCl solution for chlorpheniramine, was established to be in conformance with in vivo performance.

Relative bioavailability and pharmacokinetics evaluation of the CCSS, using commercial immediate-release tablets as the reference preparation, were performed following a randomized two-way crossover design in beagle dogs. The drug concentrations in plasma were measured by a validated LC-MS/MS method to determine the pharmacokinetic parameters of CCSS. This LC-MS/MS method demonstrated high accuracy and precision for bioanalysis, and was proved quick and reliable for the pharmacokinetic studies. The results showed that the CCSS had the longer value of Tmax and the lower value of Cmax, which meant an obviously sustained release effect, and its relative bioavailability of codeine and chlorpheniramine were (103.6 ± 14.6)% and (98.1 ± 10.3)%, respectively, compared with the reference preparation. These findings indicated that a novel liquid sustained release suspension made by using IERs as carriers and subsequent fluidized bed coating might provide a constant plasma level of the active pharmaceutical ingredient being highly beneficial for various therapeutic reasons.  相似文献   

7.
Eudragit S100 coated microsponges for Colon targeting of prednisolone   总被引:1,自引:0,他引:1  
Context: Microsponge is a novel approach for targeting the drug to the colon for the management of colon ailments such as inflammatory bowel disease.

Objective: Prednisolone loaded microsponges (PLMs) were prepared and coated with Eudragit S 100 (ES) and evaluated for colon-specific drug delivery.

Materials and methods: PLMs were prepared using quasi emulsion solvent diffusion technique using ethyl cellulose, triethylcitrate (1% v/v, plasticizer) and polyvinyl alcohol (Mol. Wt. 72?kDa, emulsifying agent). The developed microsponges were compressed into tablets via direct compression technique using sodium carboxymethyl cellulose (Na CMC) and magnesium stearate as super-disintegrant and lubricant, respectively. The tablets were then coated with ES to provide protection against harsh gastric environment and manifest colon-specific drug release.

Results: PLMs were found to be nano-porous spherical microstructures with size around 35?µm and 86% drug encapsulation efficiency. Finally, they were compressed into tablets which were coated with Eudragit S 100 In vitro drug release from ES coated tablets was carried out at various simulated gastrointestinal fluids i.e. 1?hr in SGF (pH 1.2), 2 to 3?h in SIF (pH 4.6), 4–5?h in SIF (pH 6.8), and 6–24?h in SCF (pH 7.4) and the results showed the biphasic release pattern indicating prolonged release for about 24?h.

Discussion and conclusion: In vitro drug release studies revealed that drug starts releasing after 5?h by the time PLMs may enter into the proximal colon. Hence maximum amount of drug could be released in the colon that may result in reduction in dose and dose frequency as well as side effects of drug as observed with the conventional dosage form of prednisolone.  相似文献   

8.
Abstract

Microparticles consisting of dextromethorphan-resin complex (resinate) coated with a cellulose derivative were prepared by a modified emulsion-solvent evaporation method. Adjustment of the release rate was achieved by varying resinate (core) to polymer (coat) ratio or by using additives. Higher ratios of resinate to polymer gave faster release of the drug. Polyethylene glycol (PEG) 4000 also increased the release rate. Increasing core to coat ratio also increased average particle size. Placing the emulsifying agent in different phases of the emulsion in the fabrication process also affected the particle size distribution. The microparticles showed good sustained release of the drug  相似文献   

9.
Context: The bitter taste of drug is masked by the exchange of ionized drugs with counter ions of ion exchange resin, forming “resinate”. Cyclodextrin reduces the unpleasant taste and enhances the drug solubility by encapsulating drug molecules into its central cavity.

Objective: Oral disintegrating tablets (ODTs) using the combination of ion exchange resin and cyclodextrin was developed, to mask the bitter taste and enhance drug dissolution.

Methods: Meloxicam (MX) was selected as a model drug. Formulations containing various forms of MX (free drug, MX-loaded resin or resinate, complexes of MX and 2-hydroxypropyl-β-cyclodextrin (HPβCD) or MX/HPβCD complexes, and a mixture of resinate and MX/HPβCD complexes) were made by direct compression. The ODTs were evaluated for weight variation, thickness, diameter, hardness, friability, disintegration time, wetting time, MX content, MX release, degree of bitter taste and stability.

Results and discussion: The tablet hardness was ~3?kg/in2, and the friability was <1%. Tablets formulated with resinate and the mixture of resinate and MX/HPβCD complexes disintegrated rapidly within 60?s, which is the acceptable limit for ODTs. These results were corresponded to the in vivo disintegration and wetting times. However, only tablets containing the mixture of resinate and MX/HPβCD complexes provided complete MX dissolution and successfully masked the bitter taste. In addition, this tablet was stable at least 6 months.

Conclusions: The combination of ion exchange resin and cyclodextrin could be used in ODTs to mask the bitter taste and enhance the dissolution of drugs that are weakly soluble in water.  相似文献   

10.
Abstract

Objective: The purpose of this study was to prepare the positively charged chitosan (CS)- or hydroxypropyl trimethyl ammonium chloride chitosan (HACC)-modified solid lipid nanoparticles (SLNs) loading docetaxel (DTX), and to evaluate their properties in vitro and in vivo.

Methods: The DTX-loaded SLNs (DTX-SLNs) were prepared through an emulsion solvent evaporation method and further modified with CS or HACC (CS-DTX-SLNs or HACC-DTX-SLNs) via noncovalent interactions. The gastrointestinal (GI) stability, dissolution rate, physicochemical properties and cytotoxicities of SLNs were investigated. In addition, the GI mucosa irritation and oral bioavailability of SLNs were also evaluated in rats.

Results: The HACC-DTX-SLNs were highly stable in simulated gastric and intestinal fluids (SGF and SIF). By contrast, the CS-DTX-SLNs were less stable in SIF than in SGF. The drug dissolution remarkably increased when DTX was incorporated into the SLNs, which may be attributed to the change in the crystallinity of DTX and some molecular interactions that occurred between DTX and the carriers. The SLNs showed low toxicity in Caco-2 cells and no GI mucosa irritations were observed in rats. A 2.45-fold increase in the area under the curve of DTX was found in the HACC-DTX-SLN group compared with the DTX group after the modified SLNs were orally administered to rats. However, the oral absorption of DTX-SLN or CS-DTX-SLN group showed no significant difference compared with that of DTX group.

Conclusions: The positively charged HACC-DTX-SLNs with a stable particle size could provide the enhanced oral bioavailability of DTX in rats.  相似文献   

11.
Abstract

Batches of frusemide tablets were produced using Explotab, polyplasdone XL, Amberlite IRP88, maize atarch, and Elcesan P100 as disintegrants. Bioavailability atudies were carried out on a double blind basis.

The bioavailability differences between formulations was shown to be significant. Explotab rendered the fruseulide far more bioevailable than the other four disintegrants.  相似文献   

12.
ABSTRACT

Soluble mucin (S-mucin) processed from the small intestines (ileal region) of freshly slaughtered pigs via homogenization, dialysis, centrifugation and lyophilization and its admixtures with type A gelatin were dispersed in an aqueous medium and used to formulate ceftriaxone sodium-loaded mucoadhesive microspheres by the emulsification cross-linking method using arachis oil as the continuous phase. The release profile of ceftriaxone sodium from the microspheres was evaluated in both simulated gastric fluid (SGF) without pepsin (pH 1.2) and simulated intestinal fluid (SIF) without pancreatin (pH 7.4). The microspheres were further evaluated as possible novel delivery system for rectal delivery of ceftriaxone sodium in rats. Release of ceftriaxone sodium from the microspheres in both release media was found to occur predominantly by diffusion following non-Fickian transport mechanism and was higher and more rapid in SIF than in SGF. The results obtained from this study may indicate that ceftriaxone sodium could be successfully delivered rectally when embedded in microspheres formulated with either type A gelatin alone or its admixtures with porcine mucin; hence providing a therapeutically viable alternative route for the delivery of this acid-labile third generation cephalosporin.  相似文献   

13.
Context: Extensive or long-time use of corticosteroids often causes many toxic side-effects. The ion exchange resins and the coating material, Eudragit, can be used in combination to form a new oral delivery system to deliver corticosteroids.

Objectives: The resin microcapsule (DRM) composed by Amberlite 717 and Eudragit S100 was used to target hydrocortisone (HC) to the colon in order to improve its treatment effect on ulcerative colitis (UC) and reduce its toxic side-effects.

Methods: Hydrocortisone sodium succinate (HSS) was sequentially encapsulated in Amberlite 717 and Eudragit S100 to prepare the HSS-loaded resin microcapsule (HSS-DRM). The scanning electron microscopy (SEM) was employed to investigate the morphology and structure of HSS-DRM. The in vitro release and in vivo studies of pharmacokinetics and intestinal drug residues in rat were used to study the colon-targeting of HSS-DRM. The mouse induced by 2,4,6-trinitrobenzenesulfonic acid was used to study the treatment of HSS-DRM on experimental colitis.

Results: SEM study showed good morphology and structure of HSS-DRM. In the in vitro release study,?>?80% of HSS was released in the colon environment (pH 7.4). The in vivo studies showed good colon-targeting of HSS-DRM (Tmax?=?0.97?h, Cmax?=?118.28?µg/mL of HSS; Tmax?=?2.16?h, Cmax?=?64.47?µg/mL of HSS-DRM). Moreover, the HSS-DRM could reduce adverse reactions induced by HSS and had good therapeutic effects on the experimental colitis.

Conclusions: The resin microcapsule system has good colon-targeting and can be used in the development of colon-targeting preparations.  相似文献   

14.
Aim: In this study, self-emulsifying drug delivery system (SEDDS) for oral delivery of opioid peptide dalargin were developed and characterized in vitro.

Methods: Dalargin lipophilicity was increased by O-esterification of tyrosine OH group, hydrophobic ion pairing, or a combination thereof. Distribution coefficients (log?D) of lipidized dalargin derivatives were determined. Then, dalargin was incorporated in chosen SEDDS, namely SEDDS-1, composed of 50% Capmul 907, 40% Cremophor EL, and 10% propylene glycol and comparatively more lipophilic SEDDS-2 composed of 30% Captex 8000, 30% Capmul MCM, 30% Cremophor EL, and 10% propylene glycol. Additionally, SEDDS were characterized regarding droplet size, polydispersity index (PDI), cloudy point, physical stability and stability against pancreatic lipase. Furthermore, mucus permeating properties of SEDDS and their ability to protect the incorporated dalargin against proteolysis by trypsin, α-chymotrypsin, elastase, simulated gastric fluid (SGF), and simulated intestinal fluid (SIF) were evaluated.

Results: The highest dalargin drug payload of 4.57% in SEDDS-2 was achieved when dalargin palmitate (pDAL) was ion paired with sodium dodecyl sulfate (SDS) in molar ratio 1:1. Moreover, SEDDS-1 and SEDDS-2 had a narrow droplet size distribution with average droplet sizes of 42.1 and 33.1?nm with PDI of 0.042 and 0.034, respectively. Lipolysis study showed that within 30?min 78.5% of SEDDS-1 and 92.1% of SEDDS-2 were digested. In addition, both SEDDS exhibited mucus permeating properties as well as a protective effect against enzymatic degradation by trypsin, α-chymotrypsin, elastase, SGF and SIF.

Conclusion: The results of this study suggest that the developed SEDDS could be considered for oral opioid peptide delivery.  相似文献   

15.
Abstract

Chitosan-alginate beads loaded with a model protein, bovine serum albumin (BSA) were investigated to explore the temporary protection of protein against acidic and enzymatic degradation during gastric passage. Optimum conditions were established for preparation of homogenous, spherical, and smooth chitosan-alginate beads loaded with BSA. Multilayer beads were prepared by additional treatment with either chitosan or alginate or both. The presence of chitosan in the coagulation bath during bead preparation resulted in increased entrapment of BSA. During incubation in simulated gastric fluid (SGF pH 1.2), the beads showed swelling and started to float but did not show any sign of erosion. Inclusion of pepsin in the gastric fluid did not show a further effect on the properties of the beads. Release studies were done in simulated gastric fluid (SGF pH 1.2) and subsequently in simulated intestinal fluid (SIF pH 7.5) to mimic the physiological gastrointestinal conditions. After transfer to intestinal fluid, the beads were found to erode, burst, and release the protein. Microscopic and macroscopic observations confirmed that the release of protein was brought about by the burst of beads. Chitosan-reinforced calcium-alginate beads showed delay in the release of BSA. The multilayer beads disintegrated very slowly. The enzymes pepsin and pancreatin did not change the characteristics of BSA-loaded chitosan-alginate beads. Single layer chitosan-alginate beads released 80–90% of the model protein within 12 h while multilayer beads released only 40–50% in the same period of time. The release from chitosan-alginate beads and multilayer beads in SIF was further delayed without prior incubation in SGF. It is concluded that alginate beads reinforced with chitosan offer an excellent perspective for controlled gastrointestinal passage of protein drugs.  相似文献   

16.
Objective: To develop the dual-drug resinate complexes containing codeine and chlorpheniramine with a novel batch processing, characterize the dual-drug resinate complexes, and study its drug release behavior in vitro. Methods: A procedure of simultaneous dual-drug loading using combination solutions composed of different proportions of codeine phosphate and chlorpheniramine maleate was performed to achieve the specific resinate, and the dual-drug loading content was determined by high-performance liquid chromatography method. The dual-drug resinate complexes were characterized by a scanning electron microscope, and the formation mechanisms were confirmed with X-ray diffraction analyses and differential scanning calorimetric analyses. The release behavior of the two drugs from the dual-drug resinate complexes in vitro was studied in the media simulating in vivo environments (simulated gastric fluid: pH = 1.2 HCl, simulated in vivo ionic strength: 0.15 M NaCl, and simulated intestinal fluid: pH = 6.8 buffer solution containing KH2PO4–NaOH). Results: Scanning electron microscopic analyses proved that the dual-drug resinate complexes had the same appearance and characters as the initiative ion exchange resins (IERs). Via X-ray diffraction and differential scanning calorimetric analyses, it is found that the two drugs in dual-drug resinate complexes were combined with IERs by chemical bond. The drug-resinate complex, like IER, was in amorphous state. More than 90% of codeine phosphate was released in 15 minutes in three different media, whereas little amount of chlorpheniramine maleate was released in all the release time in the medium pH = 1.2 HCl, and the release equilibrium time was about 5 minutes, only 40% was released in the medium 0.15 M NaCl, and the equilibrium time was 40 minutes, and about 90% was released in the medium pH = 6.8 KH2PO4–NaOH. The increased ionic strength generally accelerated the release of the two drugs from the dual-drug resinate complexes. Conclusion: The dual-drug resinate complexes were formed through the reaction between the drugs and the IERs by chemical bond. The release behavior of the drug from the dual-drug resinate complexes in vitro was mainly correlated with the drug molecular structure, the eluting ionic strength, composition, and ionic strength of the release media. The novel dual-drug resinate complexes could be used to deliver two drugs in one therapeutic dose.  相似文献   

17.
ABSTRACT

The dual-drug resinate containing equivalent content of dextromethorphan hydrobromide (DTM) and diphenhydramine hydrochloride (DPH) was developed and characterized. To achieve this specific resinate, a procedure of simultaneous dual-drug loading using loading solutions composed of different proportions of DTM and DPH was performed and a dual-drug loading diagram was constructed to determine the equivalent drug loading solution (ELS) and also the estimated equivalent drug content (EQC). The effects of resin crosslinkage, overall drug concentration of the loading solution, and temperature during drug loading on the values of ELS and EQC were assessed. The increased overall drug concentration from 0.25 to 1.0% w/v elevated the EQC values from 18 to 35% w/w for low crosslinked resins (Dowex 50W × 2 and × 4), and from 18 to 27% w/w for high crosslinked resin (Dowex 50W × 8). It also changed the values of ELS from 0.50 to 0.48 for the low crosslinked resins, and 0.50 to 0.55 for the high crosslinked resin. For the high crosslinked resin, the applied heat from 35 to 65°C further increased the values of EQC from 27 to 32% w/w, and changed the values of ELS in the reverse direction from 0.55 to 0.48. However, the heat did not exert significant effects on the values of EQC and ELS for the low crosslinked resins. Different batches of dual-drug resinates prepared from the determined ELS provided the resultant resinates with equivalent contents of DTM and DPH which were very close to the estimated EQC. The drug release from the resinates was performed in 0.05, 0.1, 0.2, and 0.4 N of KCl solutions. The increased ionic strength generally accelerated the release of both drugs except for 0.4 N KCl solution in which the drug release from the resinates of high crosslinkage was decreased. The congestion on the outward movement of drugs through the high crosslinked matrix might cause the delay of drug release. In conclusion, the release study demonstrated that the dual-drug resinate using a suitable crosslinked resin could be used for extended delivery of two combined drugs with the equivalent therapeutic dose.  相似文献   

18.
Abstract

Objective: The objective was to evaluate taste masking of azithromycin (AZI) by ion exchange resins (IERs) and the formation of covalent semi interpenetrating polymer network (IPN) beads using chitosan (CS) and sodium carboxylated agarose (SCAG) for sustained release of drug.

Methods: Methacrylic acid (MAA)-based IERs were prepared by suspension polymerization method. Drug release complexes (DRCs) were prepared by different drug:resin ratios i.e. 1:1, 1:2 and 1:4. The resultant DRCs were characterized using DSC, FTIR, PXRD, in vivo and in vitro taste masking, and in vitro drug release at gastric pH. IPN beads were prepared by entrapping DRCs with bio polymers and cross linked with trisodium citrate (NaCIT), and further cross-linked with glutaraldehyde (GA) for sustained release of AZI.

Results: In vitro and in vivo taste masking studies showed that MD1:4 DRC formulation was optimal. The release of AZI from DRC was found to be very fast at gastric pH i.e. 97.37?±?1.02% within 45?min. The formation of IPN beads was confirmed by FTIR. The release of drug from IPN beads at gastric and intestinal pH was found to be “<28% and <60%”, respectively. The release kinetics showed Fickian diffusion profile for ionically cross-linked beads and zero-order release mechanism for GA cross-linking beads.

Conclusions: DRCs can be effectively used for taste masking and newly formulated IPN beads demonstrated sustained release of AZI.  相似文献   

19.
The interpolymeric complexation of carrageenan and chitosan was investigated for its effect on drug release from polymeric matrices in comparison to single polymers. For this purpose, matrices with carrageenan: chitosan (CG:CS) ratios of 100%, 75%, 50%, 25%, and 0% were prepared at 1:1 drug to polymer ratio. The effect of dissolution medium and drug type on drug release from the formulations was addressed. Two model drugs were utilized: diltiazem HCl (DZ) as a salt of a basic drug and diclofenac Na (DS) as a salt of an acidic drug. Three dissolution media were used: water, simulated gastric fluid (SGF), and simulated intestinal fluid (SIF). Some combinations of the two polymers showed remarkable sustained release effect on DZ in comparison to the single polymers in water and SGF. However, no apparent effect for the combination on DZ release was shown in SIF. The medium effect was explained by the necessity of chitosan ionization, which could be attained by the acidic SGF or microacidic environment created by the used acidic salt of DZ in water, but not in SIF. An interaction between the medium type and CG:CS ratio was also found. With DS, the polymer combinations had similar dissolution profiles to those of the single polymers in water and SIF, which was explained by the lack of chitosan ionization by the medium or the drug basic salt. The dissolution profiles could not be obtained in SGF, which was attributed to the conversion of DS into diclofenac free acid. The importance of chitosan ionization for its interaction with CG to have an effect on the release of DS was demonstrated by performing dissolution of SGF presoaked tablets of DS in SIF, which showed an effect of combining the two polymers on sustaining the drug release.  相似文献   

20.
Disopyramide was microencapsulated with cellulose acetate butyrate (CAB) using an emulsion-solvent evaporation process. Drug dissolution from microcapsules was studied in both simulated gastric (SGF) and intestinal fluids (SIF) under sink conditions using the USP paddle method. There was no significant difference between drug release into SIF and SGF. As the CAB to drug ratio decreased from 3:1 to 2:1 at constant polymer mass, the drug release rate increased and the T50Y0 decreased from 2.3 hr to 0.3 hr for 303 pm particles. Dissolution T50% increased from 0.4 hr to 2 hr when the mean microcapsule size was increased from 153 to 428 μm (26% drug loading). The addition of acetone to the external phase during preparation shifted the size distribution toward larger particles, but resulted in a higher drug dissolution rate for a given particle size range. A shift to smaller particles was obtained upon increasing the concentration of surfactant. The dissolution profiles were described by the Higuchi and Baker-Lonsdale equations for drug release from spherical matrices up to 90% of the drug release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号