首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phenomena of die wall lubricated warm compaction of non-lubricant admixed iron powders were researched, and its mechanism of densification was discussed. Water atomized powder obtained from the Wuhan Iron and Steel Corporation was used. With compacting and sintering, compared with cold compaction, the density of warm compacted samples increases by 0.07 - 0. 22 g/cm^3 at the same pressed pressure. The maximum achievable green density of warm compacted samples is 7.12 g/cm^3 at 120℃, and the maximum sintered density is 7.18 g/cm^3 at 80℃. Compared with cold compaction, the ejection force of warm compaction is smaller; the maximum discrep- ancy is about 7 kN. The warm compacted mechanism of densification of iron powders can be obtained: heating the powder contributes to improving plastic deformation of powder particles, and accelerating the mutual filling and rearrangement of powder particles.  相似文献   

2.
The dispersion, stabilization and rheological properties of the slurry with various relative molecular masses of PVB were studied. The sintering properties, microstructure and dielectric properties of borosilicate glass/Al2O3 composites were also investigated. The intensities of the typical vibrating bands decrease with the decrease of the relative molecular mass of PVB, which demonstrates that the content of butyral groups in PVB binders decreases correspondingly, leading to a rapid decrease in the viscosity of the mixed slurry. The solid content of samples increases with the decrease of the relative molecular mass of PVB, and this further leads to the increase of tape thickness, bulk density and dried-shrinkage coefficient of tapes. The bulk density, relative density, three-point strength and dielectric constant of sintered samples increase with the increase of the solid content, and the shrinkage and dielectric loss decrease. By contrast, samples for PVB-5s exhibit better properties of a bulk density of 3.10g/cm3 , a relative density of 98.1%, a three-point strength of 208 MPa, a ε r value of 8.01, a tanδ value of 7.6×10-4 at 10 MHz and a well matching with Ag electrodes.  相似文献   

3.
The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an inert Ar atmosphere. The influence of sinter-forging time, temperature, and compressive stress on the relative density and hardness of the prepared samples was systematically investigated and subsequently compared with that of the samples prepared by the conventional sintering process. The relative density and hardness of the composites were enhanced when they were prepared by the sinter-forging process. The relative density values of all Cu/SiCp composite samples were observed to decrease with the increase in SiC content.  相似文献   

4.
The effect of Li and Mn substitution on the dielectric, ferroelectric and piezoelectric properties of lead free K0.5Na0.5NbO3 (KNN) was investigated. Samples were prepared using a conventional solid state reaction method. The sintefing temperature for all the samples was 1050℃. The optimum doping concentration for the enhancement of different properties without the introduction of any other co-dopants such as Ti, Sb, and La was investigated. X-ray diffraction analysis confirmed that all the samples crystallize in a single phase perovskite structure. The dielectric properties were investigated as a function of temperature and applied electric field frequency. Compared with Li-substituted KNN (KLNN), Mn-substituted KNN (KMNN) exhibited a higher dielectric constant εmax (i.e., 4840) at its critical transition temperature Tc (i.e., 421℃) along with a lower value of tangent loss at 10 kHz and greater values of saturation polarisation Ps (i.e., 20.14 μC/cm^2) and remnant polarisation Pr (i.e., 15.48 μC/cm^2). The piezoelectric constant (d33) of KMNN was 178 pC/N, which is comparable to that of lead-based hard ceramics. The results presented herein suggest that B-site or Mn substitution at the optimum concentration results in good enhancement of different properties required for materials used in memory devices and other applications.  相似文献   

5.
Sintering of the NiFe2O4-10NiO/xNi Cermet   总被引:1,自引:0,他引:1  
The sintering behavior of NiFe2 O4-10NiO/xNi cermet which was used as the most prospective inert anode materials for aluminum electrolysis was studied by examining the effects of raw powder particle size, sintering temperature, and the contents of Ni. The results show that fine particle size enables the powder to have high driving force for sintering. High temperature is beneficial to densification, but the ultra-high temperature does harm to the improvement of the density. The samples of NiFe2O4-10NiO/SNi has the highest relative density of 97.28 % when it is sintered at 1 350 ℃, but it decreases to 95.23 % when sintered at 1 400 ℃. Low addition of Ni has a great help to the sintering of NiFe2 O4-10NiO matrix. When the samples are sintered at 1 350 ℃ and the mass fraction of Ni is 5%, the highest relative density is gained, but the density decreases with the further increase of Ni contents. The low density of the sintered samples of NiFe2 O4-10NiO/17Ni is attributed to the high volume fraction of pores.  相似文献   

6.
Expansive soil-structure interaction and its sensitive analysis   总被引:1,自引:0,他引:1  
Several groups of direct shear tests of Nanning expansive soil samples were carded out by improved direct shear apparatus. The results of the characteristics of the ultimate shear stress and residual shear stress at the interface of expansive soil-structure are presented as follows: linear relation can approximately reflect changes between the both shear stress and the three factors: vertical load, water content and dry density, just different degrees from each other; increasing the vertical load from 25 kPa to 100 kPa (up by 300%) can cause the average increase of ultimate shear stress from 58% (for samples with 1.61 g/cm^3) to 80% (for samples with 1.76 g/cm^3), and an close average increase of 180% for the residual shear stress; increasing the water content from 14.1% to 20.8% (up by 47.5%) can cause the average decrease of the ultimate shear stress from 40% (for samples with 25 kPa) to 80% (for samples with 100 kPa), and the average decrease from 25% (for samples with 25 kPa) to 30% (for samples with 100 kPa) for the residual shear stress; increasing the dry density from 1.61 g/cm^3 to 1.76 g/cm^3 (up by 9.3%) can cause the average increase of ultimate shear stress from 92% (for samples with 25 kPa) to 138% (for samples with 100 kPa), and an average increase of 4% for the residual shear stress. Sensitive analysis was further made to explain reasons causing the differences of the both shear stress induced by the three factors.  相似文献   

7.
The effects of the introduction of silica glass and silica ceramic into Ca-Al-B-Si-O glass/ Al2O3 composites on decreasing the shrinkage and the dielectric constant of samples were investigated by FTIR, DSC, XRD and SEM. The results show that silica ceramic filler can better improve the formation of Si– O–Si network in the composites under high temperature, which leads to increased continuity of glass network at high temperature, and deduces the increase of viscosity of composites and further results in the decrease in the shrinkage of samples. Densification, three-point strength, and dielectric constant of samples decrease with the increase of silica glass or silica ceramic content. By contrast, Ca-Al-B-Si-O glass/Al2O3 composites with 4 wt% silica ceramic exhibit better properties of a bulk density of 2.81 g cm-3, a porosity of 0.3%, a 3dp value of 202 MPa, a ε r value of 7.41, a tan δ value of 8.3×10-4at 10 MHz and a well matching with Ag electrodes. This material is suitable to be used as the LTCC material for the application in wireless communications.  相似文献   

8.
A new group of lead-free piezoelectric ceramics,(Bi0.5 Na0.5)1-x(BaaSrb)xTiO3(abbreviated as BNBST[100x-100a/100b],0〈x〈1,a+b=1),was synthesized.The ceramics were prepared by conventional ceramic sintering technique,and the ceramics with density of 95% of the theoretical one can be sintered without the atmosphere control during the sintering process.The results of the X-ray diffraction(XRD) data show that the ceramics possess a single perovskite phase.The measurements of dielectric and piezoelectric properties reveal that the ceramics provide relatively high piezoelectric charge constant d33 and high planar electromechanical coupling factor kp.For the BNBST6-95/5 ceramics,d33 is equal to 170pC/N,and kp is equal to 32.0%.The fabrication technique for these ceramics is conventional and stable.  相似文献   

9.
The densification mechanism of an Fe-based alloy powder containing tiny oxide particles under the synergic multi-field effect of spark plasma sintering (SPS) was investigated. Metallographic microscopy and scanning electron microscopy were used to observe the morphology of samples sintered at different temperatures, and the temperature dislribution in an individual spherical powder particle during sintering was calculated in consideration of the influence of plasma, which was qualified and quantified through the analysis of the U-Icurve. The plasma was observed to play a substantial role in activating and heating the samples at the very early stage of sintering, whereas the joule-heat effect played a dominant role during sintering. Moreover, the plasma also facilitated the diffusion and migration of materials for neck formation.  相似文献   

10.
Low-temperature sintering and properties of LTCC (low temperature co-fired ceramics) materials based on CaO-BaO-Al2O3-B2O3-SiO2 glass and various fillers such as Al2O3, silica glass, christobalite, AlN, ZrO2, MgO-SiO2, TiO2 were investigated. The results show that densification, crystallization, microstructures and dielectric properties of the composites are found to strongly depend on the type of filler. The densification process of glass/ceramic composites with various fillers is mainly from 600 ℃ to 925 ℃, and the initial compacting temperature of samples is 600 ℃. The initial rapid densification of samples starts at its glass softening temperature. LTCC compositions containing Al2O3, silica glass, AlN and MgO-SiO2 fillers start to have the crystallization peaks at 890, 903, 869 and 844 ℃, respectively. The crystallization peaks are believed as correlated to the crystallization of CaAl2SiO8, β-SiO2, Ca2Al2SiO7 and β-SiO2. The composite ceramic with Al2O3, silica glass and TiO2 ceramic have a better dense structure and better smooth fracture surface. Sample for Al2O3 has the lowest dielectric loss tanδ value of 0.00091, whereas the sample for MgO.SiO, has the highest dielectric loss tanδ value of 0.02576. The sample for TiO2 has the highest dielectric constant value of 14.46, whereas the sample for AIN has the lowest dielectric constant value of 4.61.  相似文献   

11.
The manufacture process of 8 mol% Y2O3 stabilized ZrO2 ( YSZ ) from nano powders, including the forming and sintering stages, was studied. During the forming process of YSZ powders, the relative density of YSZ increases lineally with the forming press, and the sintering linear shrinkage of YSZ to the forming press compiles to the parabola trend. When the forming press exceeding 500MPa, the samples with lower shrinkage and high density were obtained. The sintering temperature of YSZ decreases greatly because of the small size and high active surface of YSZ powders. As a result, the beginning sintering temperature of YSZ made in the experiment is as low as 825℃, and the end sintering temperature is 1300-1350℃ . The relative density of YSZ ceramic by solid sintering at 1300-1350℃ is more than 97% , with little and small pores in the uniform microstructure.  相似文献   

12.
The kinetic characteristics of W grain growth operated by diffusion controlled Oswald ripening (DOR) during liquid phase sintering were studied. A liquid phase sintering of W-15wt%Cu was carried out by pushing compacts into a furnace at the moment when the temperature increased to 1340℃ for different sintering times. The results show that liquid phase sintering produces the compacts with considerably low relative density and inversely, rather high homogeneity. On the basis of the data extracted from the SEM images, the kinetic equation of W grain growth, G^n = G0^n + kt, is determined in which the grain growth exponent n is 3 and the grain growth rate constant k is 0.15 μm^3/s. The cumulative normalized grain size distributions produced by different sintering times show self-similar. The cumulative distribution function is extracted from the curves by non-linear fitting. In addition, the sintering kinetic characteristics of W-15wt%Cu compacts were also investigated.  相似文献   

13.
Ca0.6La0.2667TiO3 ceramics were prepared by conventional and microwave sintering techniques and their sinterability,microstruc-ture,and microwave dielectric properties were investigated in detail for comparison.Densified Ca0.6La0.2667TiO3 ceramics were obtained by microwave sintering at 1350oC for 30 min and by conventional sintering at 1450oC for 4 h.An unusual phenomenon was found that some larger grains(grain size range:8-10 μm) inclined to assemble in one area but some smaller ones(grain size range:2-4 μm) inclined to gather in another area in the microwave sintered ceramics.The microwave dielectric properties of Ca0.6La0.2667TiO3 ceramics prepared by micro-wave sintering at 1350oC were as follows:dielectric constant(εr) = 119.6,quality factor(Qf) = 17858.5 GHz,and temperature coefficient of resonant frequency(τf) = 155.5 ppm/oC.In contrast,the microwave dielectric properties of the ceramics prepared by conventional sintering at 1450oC were εr = 117.4,Qf = 13375 GHz,and τf = 217.2 ppm/oC.  相似文献   

14.
The dielectric properties of (AgxNa1-x)(NbyTa1-y)O3 were investigated, and its dielectric loss and capacitance were measured. The dielectric properties of nanometer (AgxNa1-x)(NbyTa1-y)O3 ceramic prepared by liquid method were better than that by conventional solid method. The average grain size of the nanometer powder(34 nm) obtained by citrate-gel method was small near 500 nm and homogeneous and the microstructure was dense and uniform. In addition, the sintering temperature had a great effect on properties. The dielectric properties of resultant samples were as follows: ε〉500, tgδ〈6 10^-4, αc〈 10 ppm/℃, ρv〉1 012Ω·cm.  相似文献   

15.
SrBi4Ti4O15 powder was synthesized by conventional solid state synthesis ( CS ) and molten salt synthesis ( MSS ) . MSS method can synthesize plate-like SrBi4Ti4O15 at lower temperature (900℃) than CS method. Plate-like form becomes more distinct when the synthesis temperature increases. This would help cause the grain orientation of the ceramics after sintering. The sintered samples of MSS had grain orientation at (0,0, 10) plane. The degree of (0,0,10) grain orientation F was 62.1% . Hot pressing made (0,0,10) grain orientation more distinct ( F = 85.7% ). The microstructures of the sintered samples were detected by SEM. Due to the grain orientation the density of samples fabricated by MSS was lower than that of prepared by CS.  相似文献   

16.
Lead-free piezoelectric (K0.5sNa0.5)1-xLixNbO3 (x = 0at%-20at%) ceramics were synthesized by spark plasma sintering (SPS) at low temperature and the effects of LiNbO3 addition on its crystal structure and properties were also studied. When the Li content was less than 6at%, a single proveskite phase with the similar structure of (K0.5Na0.5)NbO3 was formed; and a secondary phase with K3Li2Nb5O15 structure was observed in the 6at% 〈 x 〈 20at% compositional range. Furthermore, LiNbO3 existed as the third phase when the Li content was higher than 8at%. The grain sizes increased from 200-500 nm to 5-8 μm when the K3Li2Nb5O15 and LiNbO3 like phases were formed. With increasing Li content, the relative density of the ceramics first decreased from 97% to 93% and then kept constant. The piezoelectric coefficient d33, dielectric constant, and planner electromechanical coupling factor exhibited a decreasing tendency with increasing Li content because of the decrease in density and the formation of the secondary phase such as K3Li2Nb5O15 and LiNbO3. The formation of dense microstructure with a single phase is necessary in improving the properties of the (K0.5Na0.5)1-xLixNbO3 ceramics.  相似文献   

17.
The magnetic hysteresis loop was measured to know the magnetic property of molybdenite concentrate. In order to evaluate its microwave absorption capacity, the dielectric properties of molybdenite concentrate was investigated using cavity perturbation method at 915 MHz dependent on densities and temperatures. The parameter data were fitted using regression fit and a model related to the same density and temperature ranges was developed. A nonlinear surface fitting was used to present visually the effect of dielectric parameters on the microwave penetrate depth of molybdnite concentrate. The crystal products of MoO_3 obtained from microwave roasting at different temperatures were examined by scanning electron microscopy(SEM) and X-ray diffraction(XRD). The results show both the dielectric constants and loss factors increase in the increase of apparent densities and temperatures with different growth rates in the experimental range. Due to the distinguished trend of dielectric performance dependent on temperatures, two parts in the heating scenario for the molybdenite concentrate samples were divided. The microwave penetration depth is inversely proportional to both apparent densities and temperatures. The nonlinear fitting surfaces indicate the increase of dielectric loss provides an enough decrease in microwave penetration depth. In contrast, the dielectric constant has a positive effect for it. Pure MoO_3 was produced at 800 ℃ by using microwave energy. This work can be helpful to design and simulate microwave system for efficient beneficiation of molybdenite concentrate and to prepare molybdenum products from this concentrate.  相似文献   

18.
Dielectric properties were measured using cavity perturbation method.The temperature rising behaviors of molybdenite concentrate were investigated in the field of microwave.This process was conducted to show the microwave absorption properties of molybdenite concentrate and the feasibility of microwave roasting molybdenite concentrate to prepare high purity MoO3.The dielectric constant,dielectric loss,and loss tangent increase from 3.51 to 5.04,0.22 to 0.51 and 0.065 to 0.102 respectively.They are proportional to the apparent density of molybdenite concentrate in the range of 0.9-1.4 g/cm3.The results show that the molybdenite concentrate has good microwave absorption capacity in the conventional density range.The temperature rising curves show that the apparent heating rate of the molybdenite concentrate increases with the increase in microwave power and decreases with the increase in the sample mass and thickness.The temperature of concentrate sample of 100g reaches approximately 800 ℃ after 5 min of microwave treatment at 0.5 kW of power.Our findings show that it is feasible to prepare high-purity MoO3 from molybdenite concentrate by microwave roasting.  相似文献   

19.
The precursor infiltration and pyrolysis(PIP) method for preparation of BN/SiO2 composites was used to improve mechanical properties, dielectric properties and feasibility of high temperature dielectric parts with large dimensions and complex shapes. In the processing procedure, the porous BN ceramic matrix was first successfully prepared by compacting the mixed powders of B and BN and then sintering them at a certain temperature under normal pressure of N2. The polycarbosilane(PCS) solution was vacuum infiltrated into porous BN ceramics at the room temperature and then at 800℃ in the air to depolimerize out amorphous SiO2, and sintered further at 1 300℃ in N2 to get BN/SiO2 composites. The microstructure of materials was studied by means of X-ray diffraction and electron probe micro analysis. The thermo-decomposition mechanism of PCS was investigated by a TG-DTA and infrared (IR) spectrum analysis. The flexural strengths were measured by the three-point bending method. The dielectric constant and the loss tangent were measured by the wave-guide method. The results show BN/SiO2 composites were fabricated. The obtained composites posses a flexural strength of 61.96 - 93.31 MPa, the dielectric constant in the range of 3.50 - 3.78 and the order of magnitude of the loss tangent at 10^-3 , which are good for the high tempera turedielectric parts with large size and complex shapes.  相似文献   

20.
The influences of doping of MnNb2O6 on the structure and dielectric properties of Ag(Nb0.8Ta0.2)O3 were illustrated. Ag(Nb0.8Ta0.2)O3 samples doped with different amount of preformed MnNb2O6 (1 mol%, 2 mol%, 3 mol%, 4 mol%, 6 mol%, 8 mol%) were prepared by traditional solid-state reaction method and characterized by XRD, SEM and EDS, and the dielectric properties of samples were compared. The experiment results indicated that when the doping amount of MnNb2O6 was greater than 3 mol%, second phase appeared because of the solid solution limit. The permittivity of the Ag(Nb0.8Ta0.2)O3 samples doped with MnNb2O6 firstly increased and then decreased with the sintering temperature, while the dielectric loss decreased first, and then increased slightly. 1 100 ℃ seems to be the most proper sintering temperature for most of the samples. When the amount of MnNb2O6 is about 3 mol%, the samples have the best dielectric properties, larger permittivity and smaller dielectric loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号