首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 453 毫秒
1.
通过动态充氢恒载荷、氢渗透等实验研究轧制工艺对铌合金化热成型钢的氢致延迟开裂性能的影响.随着开轧温度从1000℃降低到950℃,热成型钢的氢扩散系数降低,氢致延迟开裂性能提高,耐腐蚀性能下降.透射电镜观察发现开轧温度为1000℃时MX型析出相尺寸为30 nm;开轧温度为950℃时热成型钢的MX型析出相尺寸为5 nm左右,可以观察到直径为50 nm Cr2C3析出相.作为氢陷阱的纳米析出相是提高实验钢氢致延迟开裂性能的主要因素.析出相不同的原因是开轧温度为1000℃时MX型析出相发生熟化现象,进一步抑制Cr2C3的析出.   相似文献   

2.
利用干湿循环试验与随车挂片试验方法研究了6种超高强钢在典型环境下扩散氢变化规律及延迟开裂行为,并分析了环境对超高强钢延迟开裂行为影响。结果表明:试验钢种在模拟服役环境下,除预变形11.3%的B-1钢在模拟服役环境下扩散氢含量更高外,其他样品扩散氢含量极低。实际服役环境下6种超高强钢均没有发生延迟开裂,表面完好,且实际服役环境下超高强钢扩散氢含量高于模拟服役环境。  相似文献   

3.
以抗拉强度为1 000 MPa级的汽车用冷轧双相钢为对象,采用电化学充氢和恒载荷拉伸试验方法,研究了材料在不同应力和充氢条件下的延迟断裂行为以及材料延迟断裂门槛应力与氢浓度之间的关系.结果表明,在充氢条件下材料延迟断裂时间随着应力的增大而缩短,延迟断裂的门槛应力随着充氢电流密度增大而下降,延迟断裂门槛应力与临界可扩散氢浓度的对数呈线性关系.  相似文献   

4.
采用插销实验和扫描电镜观察方法详细研究了焊缝扩散氢含量和非金属夹杂物对10Ni5CrMoV低碳中合金高强钢焊接热影响区氢致裂纹断口微观形貌的影响。结果得出,扩散氢含量是影响氢致裂纹断口微观形貌的主要因素,在插销净截面应力300~800MPa的范围内,加载应力对延迟扩展区断口形貌无明显影响。钢中硫化物夹杂的增加使扩展区形貌从IG_(HE)向MVC_(HE)转变,而含氧化物夹杂钢则转为QC_(HE)。作者提出了一个新的适于解释氢致裂纹扩展第Ⅱ阶段断口微观形貌的竞争开裂模式,从而从氢致裂纹本质机制上圆满说明了上述实验结果。  相似文献   

5.
采用阴极充H、恒载荷拉伸和电化学H渗透等试验方法,研究了超高强度钢22MnB5Nb的H扩散行为及氢致滞后开裂性能,并与常用热冲压钢22MnB5进行了对比。结果表明,H在22MnB5Nb钢中的扩散系数为3.02×10-7 cm2/s,显著低于22MnB5钢;与22MnB5钢相比,22MnB5Nb钢具有较好的耐氢致滞后开裂性能;这是由于22MnB5Nb钢晶粒较细小,增加了晶界的有效面积,使H陷阱分布更均匀,进而抑制H向裂纹尖端扩展,避免了局部H的富集。  相似文献   

6.
随着双相不锈钢在海洋油气田和酸性服役工况下的应用越来越多,临氢环境下双相不锈钢的失效风险逐步提高.目前海洋油气田双相不锈钢管道面临的氢损伤失效主要出现在海水过阴极保护环境和含H2S的酸性服役环境.氢的引入除了引起双相不锈钢腐蚀性能和组织的改变外,还不可避免遭受氢损伤,包括氢脆、氢致开裂等.本文综述了氢进入双相不锈钢后引起的氢损伤问题、腐蚀性能的改变和组织的改变,旨在为双相不锈钢油气工业临氢环境下的应用提供指导;总结了氢在双相不锈钢中扩散和分布的研究现状:氢在双相不锈钢中的扩散路径是曲折的,倾向于在晶界处聚集,随后向铁素体扩散;介绍了与氢相关的现代分析技术与方法,同时展望了临氢环境双相不锈钢研究的发展趋势:氢损伤理论机制仍不完善,需要将现代分析技术和理论计算模拟相结合完善和发展新的氢损伤理论模型.  相似文献   

7.
根据国标GB/T 8650 - 2006《管线钢和压力容器钢抗氢致开裂评定方法》,对管线钢抗氢致开裂(HIC)性能试验方法进行了研究,试验中通过采用一系列措施,保证了试验人员安全的同时顺利完成试验,取得了满意效果.  相似文献   

8.
本文采用高压釜充氢试验方法(充氢条件为;高压氢,450℃,48 h)研究了各种氢暴露条件和冷却循环对奥氏体不锈钢堆焊部位的氢致剥离敏感性的影响。所用试样是在2 1/4Cr-1Mc厚锻造板上用三种带极和焊接工艺堆焊而成。结果表明,(1)剥离是试样暴露在高温高压氢气中之后,冷却至室温放置过程中而产生的延迟裂纹;(2)剥离是沿着靠近境界层的粗大晶界或碳化物层的晶间断裂;(3)增加充氢氢分压,或增加充氢后的冷却速度,剥离敏感性增加;(4)本工作为奥氏体不锈钢堆焊部位氢致剥离裂纹的研究提供了有效的手段,同时为我国热壁加氢反应器堆焊材料和工艺的选择及其制定安全操作规程提供了指导原则。  相似文献   

9.
江波  陈刚  崔银会  任学冲  褚武扬 《钢铁》2007,42(4):61-66
研究了车轮钢中白点形成的机理以及白点对断口形貌的影响.结果表明,氢和空位聚集导致鼓泡形核和长大,随着鼓泡内氢气压力的升高,裂纹从鼓泡核壁形核、扩展导致白点形成.白点的断口为准解理,和氢致滞后开裂断口相同,含白点试样的断口形貌依赖于断裂方式和试样厚度.钢中的白点除了产生二次裂纹和局部准解理断面外,对各种断口形貌均没有明显的影响.  相似文献   

10.
谢卿  王弘 《工程科学学报》2013,35(10):1313-1319
对氢致钢内部疲劳裂纹的萌生和扩展进行了数值模拟.首先用有限元法分析了氢在疲劳载荷作用下向钢中缺陷处扩散富集的过程,然后计算得到氢含量分布结果.根据夹杂理论将氢富集区视为在缺陷附近分布的弹性夹杂,用有限元法计算得到的氢含量场求出夹杂处的应力强度因子,进而建立疲劳裂纹萌生和扩展的判据.比较了在不同加载条件下氢致疲劳裂纹萌生和扩展的规律.用梯形法修正了Sofronis和McMeeking的瞬态扩散有限元公式,发现用梯形法可以缓解加载初期较高的浓度梯度和应力梯度引起的计算结果震荡的情况,这对于计算开裂判据是十分重要的.最后讨论了提高模拟精度和改进模型的方法.   相似文献   

11.
The effect of hydrogen on the mechanical properties of a series of nineteen experimental heats of 21-6-9 stainless steel was investigated. The nineteen material groups covered a variety of forging processes, strength levels, grain sizes, and microstructures. The data show that absorbed hydrogen acts as an interstitial strengthener which increases the flow stress of 21-6-9 similar to the effects of carbon, nitrogen, and other interstitial atoms. The true stress for tensile instability was observed to be ∼1130 MPa for both uncharged and hydrogen charged specimens and appeared to be independent of process variables. Thermal charging and/or tensile testing in high pressure hydrogen indicates this austenitic stainless steel is susceptible to hydrogen-induced cracking at grain boundaries, slip bands, and other interfaces. A lack of hydrogen-induced effects at true stresses below 1100 MPa indicates a lower limit for the hydrogen-induced reduction in interfacial strength. Above a true stress of 1100 MPa the extent of hydrogen induced reductions in interfacial strength is dependent on hydrogen concentration and increases as the hydrogen concentration increases. These observations are discussed in terms of several proposed hydrogen embrittlement theories.  相似文献   

12.
通过氢渗透测试、氢扩散模拟以及氢含量测试技术研究X70钢在模拟4 MPa总压,0.2 MPa氢气分压煤制气环境下的充氢过程,并通过冲击韧性测试、裂纹扩展测试以及缺口拉伸和慢应变速率拉伸测试方法,从不同角度分析X70钢母材和焊缝组织在模拟煤制气含氢环境下的力学性能.结果表明,在总压4 MPa,0.2 MPa含氢煤制气环境中,X70钢表面存在吸附氢原子并能扩散进入X70钢内部,达到稳态后内部的可扩散氢质量分数为1.9×10-7;与空气中的原始性能比较,X70钢焊缝和母材的冲击性能、缺口拉伸和慢应变速率拉伸强度、塑性以及材料的损伤容限均未发生下降;在实验煤制气环境中,X70钢具有较低的氢脆风险.   相似文献   

13.
Pipeline transportation is an economical,safe,and efficient transportation method for transporting oil,natural gas,mineral slurry,and other fluids.Welding is the most critical construction process in pipeline engineering and is crucial in the safe operation and service of an entire pipeline system.Theoretically,the girth welded joint is the weakest link in a pipeline system.The unevenness of the structure and performance of the joint caused by welding frequently results in the failure of the welded joint before the failure of the base material of the pipe body,causing the pipeline to leak or even break.For steel pipes used in an acidic corrosive medium environment,the integration of the corrosive medium and mechanical load will accelerate the failure of the welded joint.This article reviews the failure modes of pipeline welded joints in acidic corrosive media,including stress corrosion cracking,hydrogen-induced cracking,and corrosion fracture,and corrosion fatigue considering the diffusion and accumulation of H+at the crack tip.It also reviews service pipelines in acidic corrosive media.The general processing technology of pipe joint engineering critical assessment(ECA)is investigated to provide a reference for the future development of technology in this field.  相似文献   

14.
基于国内油气工业管线应用需要,采用控轧控冷工艺,研制了强韧性匹配优良的2%Cr低合金管线钢,并测试了其组织和力学性能.以针状铁素体和多边形铁素体为主的含2%Cr管线钢具有良好的强韧性组合.采用高温高压冷凝釜模拟湿气管线中的CO2顶部腐蚀环境试验方法,研究含2%Cr低合金管线钢的抗CO2顶部腐蚀性能.相较于传统管线钢,添加2%Cr后,其CO2腐蚀产物膜是一层连续、致密的富Cr胶泥状非晶态产物膜,从而提高了其抗CO2顶部腐蚀性能.   相似文献   

15.
王国承  黄浪 《特殊钢》2009,30(5):31-33
通过鱼雷罐铁水喷粉脱硫处理,转炉加低硫废钢、出钢挡渣和加Si-Fe、Mn-Fe脱氧,控制终点[C]0.026%~0.030%,RH脱气处理和加Mn-Fe合金化,LF高碱度渣精炼和喂Ca线冶炼管线钢(%:0.039~0.042C、1.56~1.62Mn、0.01Ti、0.05Nb、0.03V)。检验结果表明,生产管线钢铸坯中的硫含量为(10~18)×10-6,T[O]30×10-6,铸坯中大部分夹杂物尺寸≤40μm,主要夹杂物为钙铝酸盐,Al2O3夹杂和单独存在的MnS夹杂很少,有利于提高管线钢抗HIC(氢致开裂)性能。  相似文献   

16.
65Mn环件装配后发生崩裂,采用断口分析、化学成分分析、金相分析及低倍分析等方法进行了失效分析。结果表明,环件中存在白点,白点在装配应力和内部氢压的作用下发生滞后扩展,当白点裂纹长大到临界尺寸时,裂纹尖端的应力强度因子达到断裂韧性,从而发生崩裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号