首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
以满足某型车辆下坡缓速制动为目的,通过车辆受力分析和匹配计算,得到液力缓速器在不同挡位以及不同坡度下所需制动力矩。以Fluent软件为平台,对液力缓速器内部流场进行数值模拟,在不同转子转速下基于流场数值解对制动力矩进行求解;开展液力缓速器台架性能试验,将试验数据与仿真结果进行力矩值对比分析。结果表明:在相同坡度,匀速下坡所需制动力矩随挡位的升高而增加;在同一挡位,所需制动力矩随坡度增大而增加;随转子转速升高,缓速器制动力矩增加,在最高转速2 100 r/min时,制动力矩达到2 308.3 N·m。仿真值与试验值基本一致,证明了仿真分析的准确性。  相似文献   

2.
阐述了液力缓速器的结构和工作原理;运用相似理论进行制动力矩计算方程的推导;以车辆动力学为基础,以道路坡度为i,液力缓速器安装于重载车辆变速箱输出二轴为工况前提,对液力缓速器长下坡恒速制动方程进行理论推导;将液力缓速器制动力矩计算方程与恒速制动方程结合,给出了液力缓速器对车辆的制动减速度综合方程,为液力缓速器恒速制动功能的开发提供了理论支持。  相似文献   

3.
长距离下坡工况运行时,为了保持重载车辆能够稳定持续地制动,通常需要安装液力缓速器装置,以保证整车长时间制动而不至温度过高。缓速器内部流场的分布直接影响到机构的工作性能及可提供的制动力矩。基于其内部结构和工作特性,采用计算流体力学CFD搭建其模型并对内、外全流场进行分析,并对不同工作状态下的制动力矩进行计算;在模型分析的基础上,搭建机构的试验台,通过试验分析验证仿真力矩分析的可靠性与准确性。结果可知:机构内部流场整体分布比较合理;运行速度、充液率是影响机构制动力矩的重要因素。试验结果验证了模型仿真的准确性及可靠性,为同类研究提供参考。  相似文献   

4.
现有关于液力缓速器制动流场数值计算方法的研究均忽略了换热芯子的流阻压降作用,导致计算边界条件设置不准确的问题。为此,基于三维扫描还原的模型重建技术,考虑换热芯子的流阻压降作用,采取全流道式选取方案,选用RNG双方程模型与基于压力的PISO求解算法,运用CFD技术对VOITH公司VR120液力缓速器制动流场进行全流道式数值计算,获得制动力矩与转速特性曲线,并使用流场压力云图对换热芯子的流阻压降作用进行验证分析。结果表明:制动力矩随着转速的升高呈现二次方增长趋势;换热芯子的流阻压降作用显著,是不可忽略的流场边界条件,全流道式数值计算方法是必要的。  相似文献   

5.
基于 CFD 软件平台,利用滑移网格的方法,将液力缓速器定子和转子之间的接合面命名为网格分界面(interface),用它来传递不同子域间的工作液的流动信息。采用了 RNG k-ε模型和 SIMPLEC 算法对不同叶片倾角的液力缓速器进行三维数值模拟和分析,得到了缓速器内部流场的压力及速度分布云图,进一步对制动力矩进行比较。结果表明:叶片倾角在36°到51°的范围里,随着叶片倾角的逐渐增大,制动力矩逐渐增加大;当叶片倾角增大到43°后,制动力矩开始逐渐减小。  相似文献   

6.
基于CFD软件平台,利用滑移网格的方法,将液力缓速器定子和转子之间的接合面命名为网格分界面(interface),用它来传递不同子域间的工作液的流动信息。采用了RNG k-ε模型和SIMPLEC算法对不同叶片倾角的液力缓速器进行三维数值模拟和分析,得到了缓速器内部流场的压力及速度分布云图,进一步对制动力矩进行比较。结果表明:叶片倾角在36°到51°的范围里,随着叶片倾角的逐渐增大,制动力矩逐渐增加大;当叶片倾角增大到43°后,制动力矩开始逐渐减小。  相似文献   

7.
基于ANSYS FLUENT 14.5仿真平台,选用RNG_(κ-ε)双方程模型与基于压强-速度的SIPMLEC求解算法,对VR120液力缓速器内流场进行全流道数值仿真分析,得到不同转速下的制动扭矩值,并通过数据拟合,建立制动扭矩与转速之间的关系式;同时,利用工况试验台,测定液力缓速器在不同转速下的制动扭矩值,并与数值仿真分析结果进行比较,结果表明:试验测定值与仿真分析值变化趋势一致,误差都在10%以内,验证了应用该算法对液力缓速器进行仿真分析是有效可行的,为液力缓速器的进一步设计提供参考依据。  相似文献   

8.
为改善液力缓速器传统湍流仿真计算模型的精度,针对其流动具有强旋转、多壁面和大曲率的特点,以THB40为研究对象,基于改进的SST-Kω双方程湍流模型在CFX14.5上以不同充液率、不同转速对其进行了全流道气液两相数值模拟计算。制动扭矩计算结果显示:在95%充液率下,制动扭矩随转速升高而增大,在38%充液率下,制动扭矩随转速升高而减小。这与台架试验结果一致,两者最大误差3.6%,精度相比传统湍流模型提高了约20%,时间节省了近50%,表明该模型更加适合液力缓速器湍流流场的数值模拟计算。研究结果为深入研究液力缓速器制动机制提供了精确、高效的参考计算模型。  相似文献   

9.
本文采用正交试验方法设计制造一组切割花岗石激光焊接圆锯片,通过切割试验和扳齿试验考察了烧结温度、保温时间和保压压力对锯片切割锋利度、切割寿命和焊缝破坏性扳齿力矩的影响.结果表明,烧结温度是影响锯片使用性能和焊接性能的最主要因素,当锯片烧结温度分别是790 ℃、820℃、850℃时,其最大切割速度分别为0.95 m/min、1.47 m/min、1.85 m/min.切割寿命分别是18.88 m、20.81 m、24.72 m,扳齿力矩分别是14.33 N·m、17.61 N·m、24.12 N·m;保温时间对三者的影响次之,当保温时间分别是40 s、80 s、120 s时,其最大切割速度分别为1.26 m/min、1.43 m/min、1.58m/min,切割寿命分别是19.69 m、22.16 m、22.56 m,扳齿力矩分别是16.85 N·m、19.0 N·m、20.20N·m;而保压压力对三者的影响最小,当保压压力分别是20 MPa、25 MPa、30 MPa时,其最大切割速度分别为1.47 m/min、1.43 m/min、1.37 m/min,切割寿命分别是20.96 m、21.26 m、22.19 m.扳齿力矩分别是16.69 N·m、20.30 N·m、19.06 N·m.指出,在实际生产中应重视烧结工艺参数的控制.  相似文献   

10.
液力缓速器制动扭矩的关键影响因素分析   总被引:2,自引:1,他引:1  
制动扭矩的大小是考察液力缓速器工作效果的关键,在控制系统加载的工作压力一定时,影响液力缓速器制动扭矩的关键因素是定转子叶轮的几何参数。为此,利用工程流体动力学(CFD)软件对不同几何参数条件下的液力缓速器的内流场进行数值模拟。基于SIMPLE算法,采用RANS方程、标准的k-ε湍流模型以及精确的八面体自适应网格技术,分析出在不同几何参数条件下的制动扭矩,结果表明:制动扭矩在循环圆直径D=50~64 mm时增大最为明显,在叶片倾角α=45°时其值最大。同时得到工作腔内的压力分布以及速度分布,为液力缓速器的优化设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号