首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 298 毫秒
1.
In this paper, a stable and robust all-fibre passively Q-switched erbium-doped fibre laser (EDFL) emitting at 1558?nm is described. The proposed laser utilizes an 11?cm long erbium-doped fibre as saturable absorber (SA). The fibre SA features a linear optical absorption of about 13?dB in the Q-switched EDFL operating regime. By elevating the input pump power from the threshold of 60?mW to the maximum available power of 142?mW, a pulse train with a maximum repetition rate of 86?kHz, minimum pulse width of 3.39?µs, maximum average output power of 10.5?mW, maximum pulse energy of 122?nJ and maximum peak power of 36?mW are obtained. The signal to noise ratio (SNR) of the spectrum is measured to be around 70?dB. This fibre SA is simple, reliable, compact and alignment free. Thus it is suitable for making a portable pulse laser source.  相似文献   

2.
We demonstrate a simple, compact, and low cost mode-locked erbium-doped fiber laser (EDFL) using a single-walled carbon nanotubes (SWCNTs) embedded in polyethylene oxide (PEO) thin film as a passive saturable absorber (SA). The film with a thickness of 50?μm was fabricated using a prepared homogeneous SWCNT solution with 0.1% loading percentage, which was mixed with a diluted PEO solution and casted onto a glass Petri dish to form a thin film by evaporation technique. The film is sandwiched between two fiber connectors to construct a SA, which is then integrated in an EDFL cavity to generate a self-started stable soliton pulses operating at 1558?nm. The soliton pulse starts to lase at pump power threshold of 17.6?mW with a repetition rate of 50?MHz, pulse width of 0.67?ps, average output power of 0.158?mW, pulse energy of 3.16?pJ, and peak power of 4.43?W.  相似文献   

3.
Multi-wavelength and Q-switched EDFLs are demonstrated using a MoS2 thin film as stabilizer and saturable absorber, respectively. For a multi-wavelength output, a 50-m-long PCF is incorporated into the cavity to induce unstable multi-wavelength oscillation and a MoS2 thin film is further incorporated into the cavity to achieve stable multi-wavelength. The laser generates 11 lasing wavelengths with constant spacing of 0.47 nm at pump power of 250 mW. In the case of the Q-switched EDFL, MoS2 thin film is utilized as a saturable absorber. Q-switched operation occurrs at a threshold pump power of 28.86–51.48 mW and the spectrum is centered at 1561.15 nm. The pulse repetition rate showed increasing trend from 18.57–30.72 kHz whereas the pulse width decreased from 53.85–32.54 μs in the Q-switched pump power range. The highest pulse energy of 30.73 nJ is obtained at pump power of 51.48 mW.  相似文献   

4.
ABSTRACT

Q-switched and mode-locked pulse generation in Erbium-doped fiber lasers (EDFLs) are demonstrated using Poly [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) organic semiconductor material as a saturable absorber (SA) for the first time. The MEH-PPV was prepared in the form of a thin film having a modulation depth of 12% and saturation intensity of 40?MW/cm2. The SA was placed in a laser cavity to produce a stable Q-switched operating at 1564.0?nm. The maximum repetition rate of 78.62?kHz, minimum pulse width of 3.54?µs and maximum pulse energy of 59.45?nJ were attained at 125.2?mW pump power. On the other hand, by incorporating an additional 100?m long single mode fiber, the mode locked EDFL self-started as the pump power was raised above 125.2?mW. The soliton pulse was obtained due to the enhancement of the nonlinearity in the cavity. The mode-locked laser operated at 1568.5?nm with a fixed repetition rate of 1.859?MHz and pulse width of 2.97?ps.  相似文献   

5.
This paper reports on the use of Antimony (Sb) polymer film to generate stable Q-switching pulses in Erbium-doped fiber laser (EDFL) cavity. The SA is fabricated by coating a thin layer of Sb on a polyvinyl alcohol (PVA) film through physical vapour deposition (PVD) process. A 1 × 1 mm area of the film SA is cut and integrated into between two fiber ferrules inside the laser cavity for intra-cavity loss modulation. Self-starting and stable Q-switched pulses are obtained within a pump power range from 60 to 142 mW. Within this range, the repetition rate increases from 70.82 to 98.04 kHz, while pulse width decreases from 7.42 to 5.36 μs. The fundamental frequency signal-to-noise ratio of the pulse signal is 74 dB, which indicates the excellent stability of the pulses. The maximum output power and pulse energy are 8.45 mW and 86.19 nJ, respectively. Our demonstration shows that Sb film SA capable of generating stable pulses train operating at 1.55-micron region.  相似文献   

6.
A graphene-based Q-switched erbium-doped fiber laser (EDFL) with a tunable fiber Bragg grating (TFBG) acting as a wavelength tuning mechanism is proposed and demonstrated. The proposed setup utilizes a newly-developed ‘ferrule-to-ferrule transfer’ technique to obtain a single graphene layer that allows for Q-switch operation in the EDFL using a highly doped-gain medium. A TFBG is used as a wavelength tuning mechanism with a tuning range of 10 nm, covering the wavelength range from 1547.66 nm to 1557.66 nm. The system has a wide repetition rate range of over 206.613 kHz from 1.387 kHz to 208.000 kHz with pulse durations of between 94.80 μs to 0.412 μs. The laser output is dependent on the pump power, with energy per pulse of 4.56 nJ to 16.26 nJ. The system is stable, with power and wavelength variations of less than 0.47 dBm and 0.067 nm. The output pulse train is free from self-mode locking and pulse jitters.  相似文献   

7.
An ultra-wide wavelength tuning range, which covers three different band regions consisting of the S-, C-, and L-bands, is proposed and demonstrated for a graphene-based Q-switched erbium-doped fiber laser using a tunable bandpass filter as the wavelength tuning and filtering mechanism. A 3?m length of erbium-doped fiber is used as the gain medium in a ring laser cavity configuration, with absorption coefficients of between 11 and 13 dB?m?1 at 980?nm and about 18?dB?m?1 at 1550?nm. The tuning range of the Q-switching pulses covers a wide wavelength range of 58?nm, which spans from 1512.5?nm to 1570.5?nm. In addition, the lasing and Q-switching thresholds are considerably low, with respective values of ~11.0?mW and ~18.4?mW. A repetition rate of 55.3?kHz is obtained at the maximum pump power of 100.4?mW, together with pulse width and pulse energy of 1.6?μs and 25.8?nJ, respectively.  相似文献   

8.
A multi-wavelength Brillouin/erbium-doped fiber laser (BEFL) operating in the 1573 nm region is proposed and demonstrated. The system employs both linear and nonlinear gain from a bismuth-based erbium-doped fiber (Bi-EDF) approximately 215 cm long and a single mode fiber (SMF) of various lengths to generate an optical comb with a spacing of approximately 0.089 nm. Two 3 dB couplers were used to form a looping arm in the system in order to produce cascaded Brillouin Stokes waves as internal feedback for multi-wavelength operation. A stable output laser comb with 10 lines at more than ??13 dBm was obtained with 4.85 dBm Brillouin pump power and two 140 mW pumps at 1480 nm. The 1480 nm pumps' power and SMF length have a significant effect on the number of wavelengths and on the output power of the generated wavelength comb.  相似文献   

9.
A tapered fiber is fabricated by heating and stretching a piece of optical fiber after the polymer protective cladding has been removed. An equidistant comb-like transmission spectrum, with a spacing of 1.6?nm and an extinction ratio of more than 5?dB, was obtained by the tapered fiber due to the multibeam interferences of the cladding modes. The tapered fiber was applied in a ring erbium-doped fiber laser (EDFL) to generate dual-wavelength lasing oscillations. The EDFL operates at wavelengths of 1557.0?nm and 1558.6?nm with a stable peak power and a signal-to-noise ratio of more than 40?dB.  相似文献   

10.
Simulations are presented of a very broad and flat supercontinuum (SC) in both the normal and anomalous group velocity dispersion regimes of the same equiangular spiral photonic crystal fiber at low pumping powers. For a pump wavelength at 1557?nm and average pump power of 11.2?mW, we obtained a bandwidth >3?μm (970?nm–4100?nm) at 40 dB below the peak spectral power with fiber dispersion ~2.1?ps/km nm at 1557?nm. In the same fiber, at pump wavelength 1930?nm and average pump power of 12?mW the SC bandwidth was more than two octaves (1300?nm–3700?nm) and dispersion was ~1.3?ps/km nm at 1930?nm. This demonstrates the potential use of the fiber for multi-wavelength pumping with commercially available sources at fairly low power.  相似文献   

11.
Lin GR  Wu JR 《Applied optics》2005,44(12):2416-2420
The jitter and frequency-detuning dynamics of a 10-GHz rational-harmonic frequency-multiplied pulse train generated from an erbium-doped fiber laser (EDFL) is studied. The EDFL is self-feedback seeded and optically injection locked by a gain-switched laser diode (GSLD) with a pulse width and an average power of 17.6 ps and 0.2 mW, respectively, at a repetition frequency of 1 GHz. The repetition frequency of the optical pulse train can be tenth-order multiplied by a slight detuning of the repetition frequency of the GSLD to match the rational-harmonic injection-locked condition of the EDFL. As the repetition frequency is multiplied from 1 to 10 GHz, the peak power, the pulse width, and the frequency-detuning bandwidth of the injection-locked EDFL pulses decrease from 1.2 to 0.3 W, from 40 to 21 ps, and from 40 to 9 kHz, respectively. The timing jitter of the injection-locked EDFL repeated at 1 GHz remains unchanged (< 0.5 ps) within the detuning bandwidth, which inevitably increases to 1.2 ps after tenth-order multiplication.  相似文献   

12.
We report an observation of soliton and bound-state soliton in passive mode-locked fibre laser employing graphene film as a passive saturable absorber (SA). The SA was fabricated from the graphene flakes, which were obtained from electrochemical exfoliation process. The graphene flakes was mixed with polyethylene oxide solution to form a polymer composite, which was then dried at room temperature to produce a film. The film was then integrated in a laser cavity by attaching it to the end of a fibre ferrule with the aid of index matching gel. The fibre laser generated soliton pulses with a 20.7 MHz repetition rate, 0.88 ps pulse width, 0.0158 mW average output power, 0.175 pJ pulse energy and 18.72 W peak power at the wavelength of 1564 nm. A bound soliton with pulse duration of ~1.04 ps was also obtained at the pump power of 110.85 mW by carefully adjusting the polarization of the oscillating laser. The formation of bound soliton is due to the direct pulse to pulse interaction. The results show that the proposed graphene-based SA offers a simple and cost efficient approach of generating soliton and bound soliton in mode-locked EDFL set-up.  相似文献   

13.
ABSTRACT

This paper reports a new type of passive saturable absorber (SA) made of transition metal oxide (TMO) embedded in polyvinyl alcohol (PVA). The Tungsten trioxide (WO3)-PVA SA is placed in an erbium-doped fibre laser cavity to produce Q-switched pulses operating at 1562.82?nm. The pulse laser starts to manifest at the threshold pump power of 40?mW and continues to exist until the maximum pump power of 195?mW. Within that pump power range, its pulse energy, repetition rate and pulse width vary from 98 to 142.85?nJ, 29.86 to 56.7?kHz and 5.032 to 1.85?µs, respectively. The pulse train is stable with a signal to noise ratio of 70?dB. This is the first demonstration of a Q-switched laser using such a SA.  相似文献   

14.
A dual-wavelength self-Q-switched operation of Nd:GYSGG laser with different output couplers is proposed and demonstrated. In self-Q-switched operation, two laser lines between 1056.86 nm and 1060.23 nm were found. Under the pump power of 4 W, the shortest pulse width of 2.02 μs was obtained with a maximum average output power of 565 mW and the optical conversion efficiency of 14.13%. The pulse repetition rate and single pulse energy were 50.2 kHz and 11.25 μJ, respectively. The system is very stable and suitable for generation of multi-wavelength pulses.  相似文献   

15.
Cook AL  Hendricks HD 《Applied optics》1998,37(15):3276-3281
A diode-laser-pumped neodymium-doped fiber laser is presented. For a launched pump power of 85 mW, the fiber laser had a cw output power of 43 mW, which is approximately an order of magnitude greater output power than any previously reported diode-pumped neodymium fiber laser operating on the(4)F(3/2)-(4)I(9/2) transition, which covers the 900-950-nm region. The fiber laser had a threshold power of 10 mW and a slope efficiency of 58% with respect to launched pump power. Tuning with a diffraction grating was obtained from 896 to 937 nm with narrow-band output powers as high as 32 mW. Emission was also obtained at 939.5 nm with use of a fiber Bragg grating as the output reflector.  相似文献   

16.
A new multi-wavelength Brillouin erbium fiber laser (BEFL), which operates in the L-band region with double frequency Brillouin spacing, is demonstrated. This design uses a Raman pump (RP) and a piece of 2?km highly nonlinear fiber as a gain medium. The double frequency spacing is achieved by employing a dual ring configuration, which is formed by utilizing a four-port circulator that removes the odd-order Stoke signals. Twenty Stokes and seventeen anti-Stokes lines, which have optical signal to noise ratio (OSNR) greater than 15?dB, are generated simultaneously with a spacing of 0.16?nm when Brillouin pump and RP powers were fixed at the optimum values of 8 dBm and 40?mW, respectively. The BEFL can be tuned in the range between 1591?nm to 1618?nm. The proposed configuration increases the number of lines generated and the OSNR, and thus allows a compact multi-wavelength laser source to be realized.  相似文献   

17.
We demonstrate a self-seeded multi-wavelength Brillouin–erbium fibre laser with double Brillouin frequency gap. The twice channel gap is induced by the gain difference in different directions. Thirty-six stable output channels with 20?GHz frequency gap are obtained when the 980?nm pump power is 300?mW. The factor that induces the double frequency gap is investigated and proved.  相似文献   

18.
W Yang  J Hou  B Zhang  R Song  Z Liu 《Applied optics》2012,51(23):5664-5667
A passively Q-switched fiber laser near 2?μm is achieved with a semiconductor saturable absorber mirror (SESAM) as a saturable absorber. Stable Q-switched pulses are generated from an extremely compact setup with a central wavelength of 1958.2?nm. Under the bidirectional pump configuration, the repetition rate of the fiber laser can be widely tuned from 20 to 80?kHz by increasing the pump power at the same time the pulse width decreases from 1?μs to 490?ns. When the incident pump power is 1.3?W, the average output power, the pulse repetition rate, the pulse width, and the highest single pulse energy are 91?mW, 80?kHz, 490?ns, and 1.14?μJ, respectively. To further optimize the system configuration, the pulse width can be reduced to 362?ns when the cavity length is reduced.  相似文献   

19.
光纤饱和吸收体稳频窄线宽光纤激光器   总被引:1,自引:1,他引:0  
伍波  刘永智  刘爽 《光电工程》2007,34(10):30-33
结合光纤饱和吸收体与光纤光栅法布里-珀罗标准具,研制出了全光纤结构1550nm单频窄线宽掺铒光纤环形激光器.采用两个976nm激光二极管双向抽运作为抽运源,高掺杂浓度铒光纤作为增益介质,以行波腔消除空间烧孔效应,利用光纤光栅法布里-珀罗标准具窄带选模特性,以10m长低掺铒光纤饱和吸收体稳频,得到了十分稳定的窄线宽激光输出.激光器抽运阈值功率21mW,在抽运光功率为145mW时输出光功率39mW,斜率效率30%,信噪比大于50dB.采用延迟自外差方法精确测量光纤激光器线宽小于10kHz.  相似文献   

20.
A passive Q-switched and mode-locked ytterbium-doped fibre laser (YDFL) pulse generation using a nickel oxide thin film as a saturable absorber is reported. The nickel oxide nanoparticle thin film was fabricated by a simple processing technique, and it has a modulation depth of 39% and saturation intensity of 0.04 MW/cm2. The saturable absorber was constructed by inserting a small piece of the film between two fibre ferrules. Then it was integrated in a YDFL cavity. The Q-switching operation started at a threshold pump power of 117.73 mW with an initial wavelength of 1073.5 nm. When the pump power was raised from 117.73 to 133 mW, the repetition rate grew from 9.5 to 15.8 kHz. The pulses had a maximum pulse energy of 478 nJ. Furthermore, a stable self-started mode-locked pulse was also succesfully generated at the threshold pump power of 97.3 mW. The central wavelength and repetition rate of the laser were 1037.72 nm and 23 MHz, respectively. The maximum pulse energy of 0.56 nJ and a peak power of 26.4 W were recorded at a pump power of 137.5 mW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号