首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
利用高导电性的氮化钛纳米线作为聚苯胺的生长基质,有效减少电极材料的电荷传输电阻,提升聚苯胺的超级电容储能性能。以碳纤维作为柔性基底,采用晶种辅助水热结合电化学聚合法制备了柔性聚苯胺/氮化钛纳米线电极材料(PANI/Ti N),电极材料呈现高度有序的同轴核壳纳米线结构,且纳米线之间彼此分离,有利于电解液离子的传输,提升储能性能。电流密度为1 A/g时,比电容为403 F/g;电流密度从0.5 A/g增加到10.0 A/g时,比电容保持率为初始容量的53.4%,电流密度为5 A/g时,循环充放电1 000次后PANI/Ti N的电容保持率为79.1%,与PANI相比均有较大提升,表明PANI/Ti N具有较好的电化学储能性质。以PANI/Ti N电极材料为电极构建柔性全固态对称型超级电容器(PANI/Ti N//PANI/Ti N)考察其应用性。PANI/Ti N//PANI/Ti N柔性超级电容器在电流密度为1 A/g时,比电容可达100.2 F/g,且在不同角度弯曲后比电容无明显衰减。当功率密度为500 W/kg时,能量密度可达50.1 W·h/kg,且1个单元的该超级电容器可驱动红色...  相似文献   

2.
:纳米线型导电聚合物是一种具有良好应用前景的电容器电极材料,本论文中,用简易的原位化学氧化法制备了微孔碳/聚苯胺纳米线(MC/PANI)复合材料,并以此复合材料为活性物质制备工作电极,在1 mol/L H2SO4中,通过循环伏安、交流阻抗和恒流充放电技术研究了其电化学电容性能,研究结果表明:在0.2 A/g的电流密度下,MC/PANI电极首次充放电比电容可达到329 F/g, 高于PANI电极的259 F/g,且MC/PANI电极电荷传递电阻(Rct)小于MC和PANI,可见纳米线型PANI可加强电极材料的电化学性能。  相似文献   

3.
申振  戴亚堂  张欢  王伟  马欢  欧青海 《精细化工》2012,(12):1181-1185,1211
纳米线型导电聚合物是一种具有良好应用前景的超级电容器电极材料,该文用简易的原位化学氧化法制备了微孔炭/聚苯胺纳米线(MC/PANI)复合材料,并以此复合材料为活性物质制备工作电极,在1 mol/L H2SO4中,通过循环伏安、交流阻抗和恒流充放电技术考察了其电化学电容性能,结果表明,在0.2 A/g的电流密度下,MC/PANI电极首次充放电比电容可达到329 F/g,高于PANI电极的259 F/g,且MC/PANI电极电荷传递电阻(Rct)小于MC和PANI,可见纳米线型PANI可加强电极材料的电化学性能。  相似文献   

4.
李瑞  谢芳霞  朱巧霞  陈露  简选 《化工进展》2021,40(11):6211-6218
通过直接电化学法,本文利用MXene表面官能团的诱导能力,在外加电场的作用下,将苯胺单体与MXene共同修饰在不锈钢电极表面,成功制得具有三维结构的MXene/聚苯胺复合电极材料。采用SEM、XRD、XPS、FTIR和Raman光谱对复合电极材料的表面形貌、物相结构和组成进行了表征,并在1mol/L H2SO4中详细研究了该电极材料的电容性能。结果表明,得益于MXene的掺杂,MXene/聚苯胺复合电极表现出较好的电子传导能力和优异的电容性能,在10mV/s的扫描速率下电容可达417F/g,当扫描速率增至200mV/s时,其电容保持率为52%,比纯PANI电极高31%。该复合电极材料具有良好的循环稳定性,在1.0A/g的电流密度下循环2000次后电容保持率可维持在83.4%。此项研究工作可为三维MXene复合材料的构建提供设计思路。  相似文献   

5.
采用原位聚合法制备不同摩尔比的PANI/MoS_2纳米复合材料。通过X射线衍射、红外光谱、透射电镜等手段,对所制备的材料进行了结构和微观形貌的表征,结果表明:所制备的聚苯胺呈现棒状纳米纤维包覆在卷曲的纳米鳞片MoS_2片层上形成了PANI/MoS_2纳米复合材料。通过循环伏安法、恒流充放电等测试手段对材料的电化学性能进行了研究,结果表明:在不同电流密度下PANI∶MoS_2=1∶0.1的二元复合物比电容明显高于纯聚苯胺,在1 A/g时PANI∶MoS_2=1∶0.1的二元复合物的比电容值可达942.5 F/g,相比于同电流密度下的PANI的400.5 F/g的高出一倍。表明适量的MoS_2的掺入有助于提高PANI电极材料的电化学电容特性。  相似文献   

6.
《应用化工》2022,(3):651-655
通过原位聚合法合成CB/PANI/MnO_2复合电极材料,对电极材料进行循环伏安、交流阻抗和恒电流充放电等电化学性能测试;通过循环伏安法(CV)测试,得出高锰酸钾添加量为0.3 g时,CB/PANI/MnO_2复合电极材料的电化学性能效果最好,在5 mV/s的扫描速度下其比容量可达到190 F/g;高锰酸钾添加量为0.3 g时,CB/PANI/MnO_2复合电极材料在0.5 A/g的电流密度下,电极材料的质量比电容高达354 F/g。  相似文献   

7.
通过原位聚合法合成CB/PANI/MnO_2复合电极材料,对电极材料进行循环伏安、交流阻抗和恒电流充放电等电化学性能测试;通过循环伏安法(CV)测试,得出高锰酸钾添加量为0.3 g时,CB/PANI/MnO_2复合电极材料的电化学性能效果最好,在5 mV/s的扫描速度下其比容量可达到190 F/g;高锰酸钾添加量为0.3 g时,CB/PANI/MnO_2复合电极材料在0.5 A/g的电流密度下,电极材料的质量比电容高达354 F/g。  相似文献   

8.
王金霞 《塑料科技》2020,48(9):23-26
将聚丙烯腈(PAN)和聚苯乙烯(PS)经静电纺丝和碳化制备出了碳纳米纤维(CNF),以PS为原料制得的聚苯乙烯磺酸钠(PSS)为亲水修饰剂,经简单混合制备亲水性PSS/CNF复合材料。实验结果表明:PSS已成功修饰于CNF表面,得到的PSS/CNF材料的亲水性得到了大幅改善;将PSS/CNF材料作为电极时,在0.5 A/g的电流密度下,比容量高达199 F/g,具有较好的电化学性能;以一对PSS/CNF电极平行组装成的超级电容器去离子装置,在外加1.4 V电压时,可以达到16.9 mg/g的脱盐量,是由CNF组成的超级电容去离子装置脱盐量的1.5倍。且循环100圈后还能保持80%的脱盐性能,具备优良的循环稳定性。  相似文献   

9.
用硼氢化钠(NaBH_4)还原氧化石墨烯得到还原石墨烯(rGO)分散液,rGO分散液与苯胺在酸性条件下原位聚合得到高比表面积三维有序结构的聚苯胺/石墨烯纳米复合材料。由场发射扫描电镜(FESEM)、透射电镜(TEM)、X射线光电子能谱(XPS)和X射线衍射(XRD)对其表面形貌和结构进行表征。结果表明:复合材料的比表面积高达136.9 m~2/g,高于纯聚苯胺的比表面积(32.71 m~2/g);直径10~20 nm的聚苯胺纳米棒均匀地垂直生长在石墨烯表面。在0.5 A/g的电流密度下,复合材料比电容达到358 F/g,大于石墨烯和聚苯胺的比电容;当充放电电流密度由0.5 A/g增加到10 A/g时,电容保留率达74.3%,表现出增强的倍率性能;在10 A/g高电流密度下,经过500次的充放电循环后容量保持率达到83.7%。  相似文献   

10.
采用脉冲电沉积一步合成得到石墨烯/聚苯胺(PANI)复合材料,通过SEM和XRD对材料的形貌和结构进行了表征,复合材料中聚苯胺为翠绿亚胺态,呈纤维状形貌。将所得石墨烯/PANI复合材料用作超级电容器电极进行电化学性能测试,比纯聚苯胺表现出更优异的超电容性能。电流密度为0.5A·g~(-1)时,石墨烯/PANI的比容量可达703F·g~(-1),且具有良好的倍率性能。  相似文献   

11.
Yan X  Tai Z  Chen J  Xue Q 《Nanoscale》2011,3(1):212-216
In this work we report a low cost technique, via simple rapid-mixture polymerization of aniline using an electrospun carbon nanofiber (CNF) paper as substrate, to fabricate free-standing, flexible CNF-PANI (PANI=polyaniline) composite paper. The morphology and microstructure of the obtained products are characterized by FESEM, FTIR, Raman and XRD. As results, PANI nanoparticles are homogeneously deposited on the surface of each CNF, forming a thin, light-weight and flexible composite paper. The resulting composite paper displays remarkably enhanced electrochemical capacitance compared with the CNF paper, making it attractive for high-performance flexible capacitors.  相似文献   

12.
A graphene nanosheet/polyaniline nanotube (GPNT) composite is prepared for the first time by in-situ chemical oxidative polymerization of aniline using vitamin C as a structure directing agent. The vitamin C molecules lead to the synthesis of polyaniline (PANI) nanotubes through the development of rod-like assembly by H-bonding in an aqueous medium. The initially synthesized graphene oxide/polyaniline nanotubes composite is reduced to graphene using hydrazine monohydrate followed by re-oxidation and protonation of the PANI to produce the GPNT nanocomposite. This novel composite showed a high specific capacitance of 534.37 F/g and an excellent energy density of 74.27 Wh/kg at a constant current of 0.5 mA. Besides, the GPNT composite exhibited excellent cycle life with 91.4% specific capacitance retained after 500 charge-discharge cycles. The excellent performance is due to the synergistic combination of graphene which provides good electrical conductivity and mechanical stability, and PANI nanofiber which deals with good redox activity.  相似文献   

13.
In this work, graphitized mesoporus carbon (GMC) was used to increase the specific capacitance and cycle stability of polyaniline (PANI). Hybrid material of polyaniline‐graphitized mesoporus carbon (GMCP) was prepared by in situ chemical polymerization of aniline in presence of sulphuric acid using ammonium persulfate oxidant with various amounts of GMC. Formation of hybrid sample was confirmed from X‐ray diffraction, and the composite sample was stable up to 250°C. Morphology, crystalline nature, and electrochemical performance of GMCP were compared with that of its individual components, GMC and PANI. GMC showed particle morphology and PANI showed nanofiber morphology. GMCP2 composite showed nanofibrous form of PANI grown on GMC (spherical form) along with PANI nanofibers. Higher crystallinity was obtained for GMCP than that of PANI. Cycling stability of GMCP2 was carried up to 12,000 cycles at 1200 W kg?1 and the retention capacitance was 66% of its original capacitance of 243 F g?1. With the same power density, GMC showed less capacitance value of 53 F g?1 with 92% retention and PANI showed capacitance of 187 F g?1 and it underwent 1500 cycles only. Higher supercapacitor performance was obtained for GMCP composite compared to that of its components, PANI and GMC. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42540.  相似文献   

14.
Ge J  Cheng G  Chen L 《Nanoscale》2011,3(8):3084-3088
Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 μg cm(-2) and 59 wt% PANI gives a specific capacitance of 55.0 F g(-1) at a current density of 2.6 A g(-1), showing its possibility for transparent and flexible energy storage.  相似文献   

15.
Core/shell nanostructured carbon materials with carbon nanofiber (CNF) as the core and a nitrogen (N)-doped graphitic layer as the shell were synthesized by pyrolysis of CNF/polyaniline (CNF/PANI) composites prepared by in situ polymerization of aniline on CNFs. High-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared and Raman analyses indicated that the PANI shell was carbonized at 900°C. Platinum (Pt) nanoparticles were reduced by formic acid with catalyst supports. Compared to the untreated CNF/PANI composites, the carbonized composites were proven to be better supporting materials for the Pt nanocatalysts and showed superior performance as catalyst supports for methanol electrochemical oxidation. The current density of methanol oxidation on the catalyst with the core/shell nanostructured carbon materials is approximately seven times of that on the catalyst with CNF/PANI support. TEM tomography revealed that some Pt nanoparticles were embedded in the PANI shells of the CNF/PANI composites, which might decrease the electrocatalyst activity. TEM-energy dispersive spectroscopy mapping confirmed that the Pt nanoparticles in the inner tube of N-doped hollow CNFs could be accessed by the Nafion ionomer electrolyte, contributing to the catalytic oxidation of methanol.  相似文献   

16.
Core/shell nanostructured carbon materials with carbon nanofiber (CNF) as the core and a nitrogen (N)-doped graphitic layer as the shell were synthesized by pyrolysis of CNF/polyaniline (CNF/PANI) composites prepared by in situ polymerization of aniline on CNFs. High-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared and Raman analyses indicated that the PANI shell was carbonized at 900°C. Platinum (Pt) nanoparticles were reduced by formic acid with catalyst supports. Compared to the untreated CNF/PANI composites, the carbonized composites were proven to be better supporting materials for the Pt nanocatalysts and showed superior performance as catalyst supports for methanol electrochemical oxidation. The current density of methanol oxidation on the catalyst with the core/shell nanostructured carbon materials is approximately seven times of that on the catalyst with CNF/PANI support. TEM tomography revealed that some Pt nanoparticles were embedded in the PANI shells of the CNF/PANI composites, which might decrease the electrocatalyst activity. TEM-energy dispersive spectroscopy mapping confirmed that the Pt nanoparticles in the inner tube of N-doped hollow CNFs could be accessed by the Nafion ionomer electrolyte, contributing to the catalytic oxidation of methanol.  相似文献   

17.
This research studies the improving effects of graphene porous (GP) on the supercapacitive performance of a polyaniline/graphene porous (PANI/GP) nanocomposite. GP nanosheets were synthesized via chemical vapor deposition, and PANI/GP was electrochemically composited through successive cyclic voltammetry. The samples were characterized by fast Fourier transform infrared (FTIR), x-ray diffraction (XRD), and scanning electron microscopy (SEM), and energy-dispersive x-ray spectrometry (EDS) techniques. Porous GP nanosheets were uniformly dispersed in the composite structure. Furthermore, the electrochemical performances of the synthesized samples were compared using galvanostatic charge/discharge, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Incorporating GP into the PANI significantly increased specific capacitance from 276 (in PANI) to 577 F/g (in PANI/GP). The electrochemical stability of electrodes was compared during 1000 successive charge/discharge cycles. After 1000 cycles, PANI/GP kept 90% of its initial capacitance, and only 25% of the charge storage capacitance of bare PANI remained.  相似文献   

18.
In this study, for the first time, aniline was oxidized by ammonium persulfate (APS) at higher temperatures without any protic acid, and APS acted as an oxidizing agent and a protonating agent. During the oxidation of aniline by APS, sulfuric acid formation occurred, and the sulfuric acid was incorporated into polyaniline (PANI) as a dopant. PANI–sulfate samples were characterized by IR spectroscopy, X‐ray diffraction, and scanning electron microscopy techniques. In this methodology, a highly ordered PANI–sulfate salt (H2SO4) with a nanofiber morphology was synthesized. Interestingly, a PANI base was also obtained with a highly ordered structure with an agglomerated netlike nanofiber morphology. PANI–H2SO4 was used as an electrode material in a symmetric supercapacitor cell. Electrochemical characterization, including cyclic voltammetry (CV), charge–discharge (CD), and impedance analysis, was carried out on the supercapacitor cells. In this study, the maximum specific capacitance obtained was found to be 273 F/g at 1 mV/s. Scan rate from cyclic voltammetry and 103 F/g at 1 mA discharge current from CD measurement. Impedance measurement was carried out at 0.6 V, and it showed a specific capacitance of 73.2 F/g. The value of the specific capacitance and energy and power densities for the PANI–H2SO4 system were calculated from CD studies at a 5‐mA discharge rate and were found to be 43 F/g, 9.3 W h/kg, and 500 W/kg, respectively, with 98–100% coulombic efficiency. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号