首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
应用丝网印刷和共烧结制备LaNi0.6Fe0.4O3-δ (LNF)/Sc0.1Zr0.9O1.95(ScSZ)/LaNi0.6Fe0.4O3-δ 对称电池.以硝酸铈和硝酸钆为原料、柠檬酸为燃料,采用燃烧法制备质量分数为21.3%的Gd0.2Ce0.8O2(GDC)包覆的LNF阴极.电化学阻抗谱(EIS)表明:在750 ℃工作温度下,当无Cr基合金接触时,质量分数21.3%的GDC包覆的LNF经过1 200 h的搁置,其极化电阻由0.13 Ω·cm2增加至0.40 Ω·cm2,而纯LNF经过500 h的搁置,极化电阻由0.70 Ω·cm2增加至2.36 Ω·cm2,GDC的包覆加速了气体/阴极/电解质三相界面反应区的扩散过程,降低了阴极极化电阻;当有Cr基合金接触时,相对于质量分数为21.3%的GDC包覆的LNF阴极,LNF/ScSZ界面处沉积出大量Cr2O3,减缓了活性粒子在三相界面处的扩散,故其极化电阻远大于相同条件下质量分数为21.3%的GDC包覆的LNF阴极的极化电阻,质量分数为21.3%的GDC包覆的LNF阴极具有较佳的抗铬污染性能.  相似文献   

2.
采用溶胶-凝胶法制备Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF)粉体后, 使用Ce0.9Gd0.1O2-δ(GDC)溶胶包裹BSCF粉的方法制备疏松多孔的BSCF-xGDC(x=30wt%, 40wt%, 50wt%)复相阴极。通过X射线衍射仪、场发射扫描电镜和透射电镜对复相阴极的物相组成、单电池断面形貌及GDC对BSCF颗粒的包裹形貌进行表征。利用阻抗谱测试研究了复相阴极材料的电化学性能, 讨论了掺入GDC量对阴极性能的影响。结果表明:通过GDC溶胶包裹BSCF粉体的制备方法改善了阴极的电化学性能, 在同一温度下, BSCF-40GDC阴极的极化电阻最小, 在650℃时阴极极化阻抗约为0.397 Ω•cm2; 以BSCF-40GDC为阴极制备的单电池, 以H2+3%H2O为燃料气、空气为氧化气体, 650℃下电池的最大功率密度为0.514 W/cm2, 欧姆电阻为0.257 Ω•cm2, 两极极化电阻为0.0588 Ω•cm2。  相似文献   

3.
采用柠檬酸-硝酸盐自蔓延燃烧法分别合成了Pr0.6Sr0.4Co0.2Fe0.8O3-δ(PSCF)和Gd0.2Ce0.8O2-δ(GDC)粉体, 高温固相法合成La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)电解质粉体。以LSGM为电解质, PSCF同时作为阴极和阳极, GDC作为功能层材料, 构建了对称固体氧化物燃料电池PSCF│GDC│LSGM│GDC│PSCF。利用X射线衍射法研究材料的成相以及相互间的化学稳定性, 交流阻抗法记录界面极化行为, 用扫描电子显微镜观察电池的断面微结构, 用自组装的测试系统评价电池输出性能。结果表明, 合成的PSCF粉体呈立方钙钛矿结构, 具有良好的氧化-还原可逆性。使用GDC功能层明显改善了氢气环境下PSCF与LSGM材料间的化学相容性以及电池的输出性能, 800℃时, 电极│电解质界面极化电阻从6.892 Ω·cm2下降到0.314 Ω·cm2; 以加湿H2(含体积分数3%的水蒸气)为燃料气, 空气为氧化气时, 单电池输出功率密度由269 mW/cm2增大至463 mW/cm2。研究结果显示, PSCF是对称固体氧化物燃料电池良好的候选电极材料, GDC功能层对改善电池长期稳定性能具有潜在的应用价值。  相似文献   

4.
随着操作温度降低,中温固体氧化物燃料电池(IT-SOFCs)需要更高催化活性的阴极材料来提升电池性能。为此,本研究采用溶胶-凝胶法合成了双钙钛矿Sr2CoFeO5+δ(SCF)阴极材料,并探讨了SCF阴极与摩尔分数20%Sm2O3掺杂的CeO2(SDC)进行不同比例的复合对电极性能的影响,优化了电极的化学膨胀和面积比电阻(ASR),进而提升了SOFC单电池的电化学性能。结果表明,SCF作为SOFC阴极,经950℃退火10 h后与普通电解质具有良好的化学相容性;其中,SCF与SDC按照质量比1:1复合的样品可以将纯SCF样品的平均热膨胀系数(TEC)从2.44×10-5 K-1显著降到15.4×10-5 K-1。此外,SCF-xSDC(x=20,30,40,50,x为SDC的质量分数)复合阴极的ASR在800℃下分别低至0.036、0.034、0.028和0.092Ω·cm2  相似文献   

5.
La0.2Sr0.8TiO3 (LST) 对于直接甲烷为燃料的固体氧化物燃料电池而言是一种具有潜力的阳极材料。本研究采用传统的固相反应法合成了LST粉体, 按照质量比5: 5混合LST和Sc0.1Zr0.9O2(SSZ)粉体, 以此复合阳极材料制备对称电池并测试其极化阻抗。在氢气气氛中700、750和800℃时阳极极化阻抗分别为5.3、3.0以及2.0 ?·cm2。鉴于LST的电导率较低, 我们通过浸渍工艺加入10wt%的Ni来提高复合阳极的电导率和催化活性, 复合阳极测得的极化阻抗明显减小。以10wt%Ni-LST-SSZ作为阳极材料制备出的阴极支撑型单电池, 其在氢气和甲烷中的最大功率密度分别可达到225 mW/cm2和175 mW/cm2, 并且在甲烷燃料中放电时表现出了较好的稳定性。  相似文献   

6.
采用EDTA-柠檬酸联合络合法制备了SrCo1-xGaxO3-δ (x=0、0.1、0.2、0.3、0.4)系列阴极材料。通过 X 射线衍射、热膨胀测试、X 射线光电子能谱和电化学阻抗谱等方法对试样进行分析, 研究了Ga掺杂量对材料性能的影响。结果表明试样均为钙铁矿结构, 随着 Ga 含量的增加, 阴极粉体材料热膨胀系数、电导率和阴极材料表面的吸附氧逐渐减小。其中, SrCo0.8Ga0.2O3-δ的面电阻最小, 600℃时为 0.73 Ω•cm2, 以其为阴极的单电池在650℃的工作温度下的最大输出功率达 0.484 W/cm2。  相似文献   

7.
杜旭  李松波  安胜利  倪洋  薛良美 《功能材料》2022,53(4):4105-4110
通过溶胶凝胶法制备了Nb掺杂Nd0.6Sr0.4Co1-xNbxO3-δ钙钛矿氧化物,并将其作为阴极材料应用于SOFC领域。通过扫描电镜、X射线衍射及热膨胀仪探究了材料的微观形貌、物相结构以及热膨胀特性。实验结果表明,随着Nb掺杂量的增加,原结构由正交相向立方相转变;热膨胀系数也随之降低。通过电化学工作站对材料进行了电导率、电化学阻抗谱和单电池功率密度测试。测试结果表明Nb含量的增加降低了原结构的电导率。当Nb掺杂量达到0.06时,Nd0.6Sr0.4Co0.94Nb0.06O3-δ具有最低的极化电阻,800℃时为0.061Ω·cm2;同时对其进行功率密度测试,在800℃时其功率为167.9 mW/cm2,具有良好的电化学性能,可作为中低温SOFC阴极材料。  相似文献   

8.
固体氧化物电解池(SOEC)电解CO2时其阴极是CO2还原反应发生的场所,也是SOEC取得高性能的关键环节。研究了Mn离子掺杂的Pr0.5Ba0.5Fe0.9Mn0.1O3-δ(PBFM)钙钛矿材料作为SOEC阴极电解纯CO2的性能。结果表明在850℃、1.8 V的电解电压下基于PBFM阴极的SOEC电流密度可达1.7 A·cm-2,较使用未掺杂的Pr0.5Ba0.5FeO3-δ(PBF)阴极提升了约30%;同时,电池的极化阻抗下降约60%,电化学性能增长主要来源于掺杂后氧空位浓度的增加。在800℃、1.3 V恒压的条件下70 h的长期测试中,PBFM电池没有表现出明显的衰减,且长期测试后的电极没有积碳现象。研究证明PBFM是一种有前景的电解CO2 SOEC阴极材料。  相似文献   

9.
高性能阴极是提高SOFC电池性能的关键因素。为了提高阴极电化学性能和降低阴极极化阻抗, 本实验将Pechini法制备的LSM(La0.85Sr0.15MnO3)溶胶浸渍到LSCF(La0.6Sr0.4Co0.2Fe0.8O3-δ)-GDC(10GDC)多孔阴极中, 构成LSM-LSCF-GDC三相复合阴极。为了提高浸渍效率, 研究了不同pH下LSM浸渍液的浸渍情况, 研究发现: LSM浸渍液的pH是影响浸渍效果和浸渍量的直接因素。当LSM浸渍液为弱碱性时, 络合物胶体粒子带负电, 而LSCF-GDC的孔洞内壁带大量的负电, 这样使得两者间的主要作用力为排斥力, 有利于LSM胶体粒子进入阴极的孔洞内部。当LSM浸渍液pH为8.0时, 生成的LSM纳米颗粒能较均匀地分布在阴极骨架内壁, 随着浸渍次数的增加, 阴极的极化阻抗先减后增, 浸渍3次的复合阴极具有最低极化阻抗0.16 Ω•cm2(700℃空气中)。在700℃下, 以H2+3% H2O为燃料、空气为氧化气体, 浸渍与未浸渍的电池的最大功率密度分别为0.645 W/cm2和0.503 W/cm2。  相似文献   

10.
为了提高磁控管阴极的工作性能, 采用新型La2O3/Y2O3-Gd2O3-ZrO2难熔盐浸渍W基制备直热式阴极, 并对该阴极的热发射特性和寿命特性等进行了测试。热发射测试结果表明, La2O3-Gd2O3-ZrO2浸渍阴极在1600℃可提供超过0.18 A/cm2的空间电荷限制区电流密度。在同等发射电流下, 该浸渍阴极的工作温度比纯W阴极降低至少300℃, 该阴极在1750℃, 0.5 A/cm2直流负载下, 可以连续工作2100 h。当以Y2O3代替La2O3, 采用相同的配比制备阴极时, 1400℃、1700℃下即可分别提供超过0.6、3.4 A/cm2的空间电荷限制区电流密度。Y2O3-Gd2O3-ZrO2浸渍阴极的工作温度比La2O3-Gd2O3-ZrO2浸渍阴极降低至少400℃, 该阴极在1600℃, 1.5 A/cm2直流负载下, 可以连续工作2600 h。最后, 对这两种新型含稀土氧化物难熔盐浸渍阴极的热发射机理进行了探讨。  相似文献   

11.
与传统的全陶瓷结构的固体氧化物燃料电池(Solid Oxide Fuel Cell, SOFC)相比, 金属支撑固体氧化物燃料电池(MS-SOFCs)具有材料成本低, 结构稳定性高, 抗热震性高等优点。为了促进SOFC的商业化, 采用流延-烧结-浸渗工艺制备了Ce0.8Sm0.2O2-δ(SDC)-430L阳极/Zr0.88Sc0.22Ce0.01O2.12(SSZ)电解质/SDC-430L阴极构型的全对称结构金属支撑固体氧化物燃料电池(MS-SOFC)。电池以湿氢气为燃料、空气为氧化气, 在600、650和700℃时的最大功率密度为220、250和280 mW/cm2。电化学阻抗谱的测试表明, 电池的性能由SDC-430L电极的极化阻抗所主导, 在700、650和600℃时, 电池欧姆阻抗分别为0.16、0.21和0.29 Ω•cm2, 极化阻抗分别为0.67、0.90 和1.22 Ω•cm2。与阳极相比, 阴极的极化阻抗更为显著。对称SDC-430L电池在3%H2O-97%H2和空气气氛中测得的极化阻抗分别为0.23和1.92 Ω•cm2 (650℃)。进一步优化电池结构(例如采用更加精细的430L骨架)和催化材料(例如含有Ag、Pt的复合材料)将有助于提升该MS-SOFC的电化学性能。  相似文献   

12.
王凯风  刘伟  王金淑 《无机材料学报》2013,28(12):1354-1358
采用液相共沉淀法制备了612铝酸盐(n(BaO):n(CaO):n(Al2O3)=6:1:2)前驱粉末, 在不同气氛(H2、CO2、N2)、不同温度(1300℃、1400℃、1500℃)焙烧制备铝酸盐, 系统研究了不同工艺制备的铝酸盐对钡钨阴极性能的影响。结果表明: 前驱粉末的最佳焙烧工艺为: H2气氛、1500℃, 可获得主相为Ba5CaAl4O12的铝酸盐, 用其制备的钡钨阴极发射电流密度可达12.2 A/cm2, 蒸发速率仅为1.09×10-8 g/(cm2?s)。  相似文献   

13.
鉴于平板式固体氧化物燃料电池(SOFC)电堆对低面电阻、高稳定性阴极接触材料的需求,本研究阐明了LaNi0.6Fe0.4O3(LNF)颗粒尺寸调控对导电和SOFC单电池性能演变的影响机制,优化了LNF预处理工艺,降低了接触组件面电阻,提升了SOFC单电池性能及热循环稳定性。结果表明:预压造粒的样品(LNF-2)与高温烧结预处理的样品(LNF-3)的面电阻更小,分别为0.074和0.076?·cm2;在750℃施加1 A/cm2电流负载后,能够更快地进入稳态,并保持颗粒尺寸稳定。其中,LNF-2单电池在750℃下的峰值功率密度0.94 W/cm2较未处理的LNF的0.66 W/cm2高,但在热循环过程中性能衰减较大,下降了20%;而LNF-3单电池在20次热循环后峰值功率密度仅下降了4%。本研究对高可靠SOFC电堆装配及其长寿命稳定运行具有指导及参考价值。  相似文献   

14.
夏天  孟燮  骆婷  占忠亮 《无机材料学报》2019,34(10):1109-1114
对称固体氧化物燃料电池由于生产过程简单、成本低, 受到了研究者的广泛关注。然而较低的电极催化性能制约了其进一步的发展。本研究利用溶胶-凝胶法合成了一系列钙取代Sr2Fe1.5Mo0.5O6的钙钛矿材料(Sr2-xCaxFe1.5Mo0.5O6-δ, x=0, 0.2, 0.4, 0.6), 并研究了其作为对称固体氧化物燃料电池电极催化剂的性能。X射线衍射(XRD)测试表明所有样品在空气与氢气气氛中均能保持立方钙钛矿结构。而在程序升温还原(TPR)过程中, Ca 2+的掺入能有效降低还原温度, 提升其对析氧反应的催化活性。对称阳极电池在氢气气氛中的测试表明, 当Ca 2+的掺入量为0.6时电池极化阻抗最小。利用流延骨架与湿化学浸渍法制备了单电池SC0.6FMO|La0.9Sr0.1Ga0.8Mg0.2O3(LSGM)| SC0.6FMO。以氢气作为燃料时, 单电池在800与650 ℃的最大功率密度分别为1.05与0.41 W?cm -2。以上结果表明Sr2-xCaxFe1.5Mo0.5O6-δ可以作为高效对称燃料电池的电极催化剂。  相似文献   

15.
采用柠檬酸-硝酸盐自蔓延燃烧法分别合成了Pr_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(PSCF)和Gd_(0.2)Ce_(0.8)O_(2-δ)(GDC)粉体,高温固相法合成La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3-δ)(LSGM)电解质粉体。以LSGM为电解质,PSCF同时作为阴极和阳极,GDC作为功能层材料,构建了对称固体氧化物燃料电池PSCF│GDC│LSGM│GDC│PSCF。利用X射线衍射法研究材料的成相以及相互间的化学稳定性,交流阻抗法记录界面极化行为,用扫描电子显微镜观察电池的断面微结构,用自组装的测试系统评价电池输出性能。结果表明,合成的PSCF粉体呈立方钙钛矿结构,具有良好的氧化–还原可逆性。使用GDC功能层明显改善了氢气环境下PSCF与LSGM材料间的化学相容性以及电池的输出性能,800℃时,电极│电解质界面极化电阻从6.892?·cm~2下降到0.314?·cm~2;以加湿H_2(含体积分数3%的水蒸气)为燃料气,空气为氧化气时,单电池输出功率密度由269 m W/cm2增大至463 m W/cm~2。研究结果显示,PSCF是对称固体氧化物燃料电池良好的候选电极材料,GDC功能层对改善电池长期稳定性能具有潜在的应用价值。  相似文献   

16.
采用离心沉降法及高温共烧结工艺在多孔NiO-Sm0.2Ce0.8O1.9(SDC)阳极上成功地制备了SDC/LSGM (La0.9Sr0.1Ga0.8Mg0.2O3-δ)/SDC电解质薄膜. 经共烧结制备了11μmSDC/15μmLSGM/13μmSDC三层复合电解质薄膜. 电池在800℃最大输出功率密度为0.92W/cm2, 但电池的开路电压0.89V低于理论电动势. 电池微结构和元素分析表明, 高温共烧结时Ni扩散到LSGM电解质薄膜中引起电子电导, 导致电池开路电压偏低. 阻抗谱测试表明, 引入SDC电解质作为隔离层后, 欧姆极化过程和电极极化过程共同影响电池的性能  相似文献   

17.
固态氧化物电解池(SOECs)因较高的能量转化效率在电化学还原CO2, 实现“碳中和”社会方面备受关注。与非对称电池结构相比, 对称SOECs的空气极和燃料极是相同或相近的材料, 可以减少界面种类, 改善电极与电解质的热膨胀匹配性, 简化电池的制备工艺。本研究合成了钙钛矿氧化物LaxSr2-xFe1.5Ni0.1Mo0.4O6-δ (LxSFNM, x=0.1、0.2、0.3、0.4), 作为固体氧化物电解池的对称电极用于评估纯CO2的电化学还原性能。掺入La3+可以有效提高反应催化活性, 其中L0.3SFNM为电极的电解池表现出最高的电化学性能, 800 ℃下, 在空气中的极化电阻为0.07 Ω∙cm2, 在50% CO-50% CO2中的极化电阻为0.62 Ω∙cm2。单电池L0.3SFNM@LSGM|LSGM|L0.3SFNM@LSGM在800 ℃和1.5 V电压下的电解电流密度为1.17 A∙cm-2, 在初始的50 h CO2短期电解测试中表现出优异的稳定性, 是一种理想的对称电极材料。  相似文献   

18.
用固相反应法制备(Gd1-xErx)2(Zr0.8Ti0.2)2O7(摩尔分数x=0,0.2,0.4)陶瓷并测试其晶体结构、显微形貌和物理性能,研究了Er2O3掺杂的影响。结果表明,(Gd1-xErx)2(Zr0.8Ti0.2)2O7陶瓷具有立方烧绿石结构,显微结构致密,在室温至1200℃高温相的稳定性良好;Er3+掺杂降低了陶瓷材料的热导率和平均热膨胀系数,当x=0.2时,其1000℃的热导率最低(为1.26 W·m-1·k-1)。同时,Er3+掺杂还提高了这种材料的硬度和断裂韧性。  相似文献   

19.
本研究采用高温固相反应法合成了BaCe0.7Zr0.1Y0.2O3-d (BCZY7)质子导体氧化物, 对材料的物相结构和微观形貌进行表征和分析, 并将BCZY7作为固体氧化物燃料电池(SOFC)的电解质, 通过浸渍法和共烧结法成功制备了阳极支撑的NiO-BCZY7/BCZY7/La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)-BCZY7钮扣式电池。以氢气(含3vol% H2O)为燃料, 空气为氧化剂, 对电池的电化学性能进行测试。结果表明, 在600、550、500 ℃时, 电池的最高功率密度分别为203, 123, 92 mW×cm-2, 而传统(ZrO2)0.92(Y2O3)0.08基SOFC在600 ℃时通常只有几十毫瓦的单位面积输出, 质子导体电解质可以极大改善SOFC的中低温性能, 缓解SOFC工作温度高的问题。  相似文献   

20.
采用静电纺丝技术结合高温煅烧方法,以乙酰丙酮钴(Co(C5H7O2)3)为前驱物,制备了由Co3O4纳米颗粒组成的多孔纳米纤维(Co3O4 NFs),其比表面积高达83 m2·g?1,并将制得的多孔Co3O4 NFs用于锂-空气电池催化剂。多孔Co3O4 NFs为电池反应提供了充足的活性位点及反应物的传输通道,有利于电池反应的顺利进行,使电池的放电容量得到极大地提高。另外,Co3O4催化剂的加入提高了电极的催化活性,较大程度降低了电池的过电位。值得注意的是,Co3O4催化剂的加入同时调控了锂-空气电池放电产物Li2O2的形貌,得到的放电产物Li2O2尺寸更小,在电极表面分布更为均匀,该形态的Li2O2在充电过程中更容易被分解,有利于提高电池的充电效率,同时电极的体积效应也可得到极大缓解。得益于以上优势,基于多孔Co3O4 NFs/炭黑Super P (Co3O4 NFs/SP)正极的锂-空气电池的电化学性能得到较大提高,50 mA·g?1电流密度下Co3O4 NFs/SP的放电容量高达10600 mA·h·g?1,电池可实现100次的充放电循环。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号