首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Olive oil extraction is one of the most important traditional food industries in the Mediterranean region, especially in Italy. In addition to olive oil, this industry produces by-products, in particular olive mill wastewaters (OMWs) and olive husks, which represent a serious environmental problem. OMWs can be rarely treated in a municipal WWTP, using conventional wastewater treatments. A novel biological process has to be considered in order to treat OMWs. Literature data show that yeasts and different kinds of fungi are able to reduce both the organic and the phenolic content of the OMW. The present work is aimed at investigating the growth of a biomass rich in fungi in a batch reactor filled with OMW and its capacity to degrade the organic and phenolic load. The aerobic OMW degradation obtained using this biomass reached a COD and TP removal efficiency of 86 and 70%, respectively. Respirometric tests have been carried out in order to measure the biomass activity on different substrates: OMW and phenolic compounds (gallic and p-coumaric acids). The polyphenolic biodegradation efficiency of fungi biomass was higher than the one of a non-acclimated activated sludge biomass. Fungi biomass was able to completely degrade pure phenolic compounds.  相似文献   

2.
The present work describes an experimental study carried out in order to investigate the efficiency and feasibility of physical (lime coagulation) and advanced oxidation processes (Ozone and Fenton's process) for olive oil mill wastewater treatment. Particular attention was paid to the degradation of both organic and phenolic compounds. Lime coagulation reaches maximum removal at a pH of 12, with a TP (total polyphenols) and COD reduction of 37 and 26%, respectively. Ozone oxidation is also pH-dependent, showing the higher removal efficiency (91% for TP and 19% for COD) with an initial pH value of 12. Experimental results show a lower efficiency of Fenton's process than ozone in TP removal, reaching a maximum value of 60%. Oxidation trials carried out on gallic and p-coumaric synthetic solutions confirmed ozone and Fenton's efficiency at degrading phenolic compounds. Biological trials, both aerobic and anaerobic, highlighted a significant increase of biodegradability of treated OMW samples if compared to the untreated ones. Respirometric tests showed an increase in BOD of about 20% and anaerobic batch tests provided a methane production up to eight times higher.  相似文献   

3.
In this work, we investigated an integrated technology for the treatment of the recalcitrant contaminants of olive mill wastewaters (OMW), allowing water recovery and reuse for agricultural purposes. The method involves an electrochemical pre-treatment step of the wastewater using the electro-Fenton reaction followed by an anaerobic bio-treatment. The electro-Fenton pre-treatment process removed 66% of the total polyphenolic compounds and subsequently decreased the OMW toxicity from 100 to 66.9%, which resulted in improving the performance of the anaerobic digestion. A continuous laboratory-scale methanogenic reactor was operated at a loading rate of 10g COD/L per day without any apparent toxicity. Furthermore, in the combined process, a high overall reduction in COD, suspended solids, polyphenols and lipids content was achieved by the two successive stages. Moreover, this combined process which was experimented at a real scale (25 m3 digester) demonstrated its technical feasibility and opens promising perspectives for industrial application in the Mediterranean countries because of its easy conception and high energy (methane) production.  相似文献   

4.
This study was conducted to evaluate the treatability of OMW (olive mill wastewater) with sewage and sewage sludge, which could supplement nutrients and microbes required for OMW treatment and reduce its possible toxicity. The amount of OMW added to an aeration tank was based on the loading difference between the designed and actual COD loads, while the amount added to anaerobic digestion for energy recovery was determined by CH4 production. The COD removal efficiencies were 70-85% for both systems. Compost of OMW with dried sewage sludge also showed a similar temperature profile without OMW addition. This strongly suggested that OMW can be treated at a sewage plant without pretreatment and the treated effluent can be reused in irrigation for an arid region.  相似文献   

5.
Olive oil production, one of the main agro-industries in Mediterranean countries, generates significant amounts of olive mill wastewaters (OMWs), which represent a serious environmental problem, because of their high organic load, the acidic pH and the presence of recalcitrant and toxic substances such as phenolic and lipidic compounds (up to several grams per litre). In Italy, traditional disposal on the soil is the most common way to discharge OMWs. This work is aimed at investigating the efficiency and feasibility of AOPs and biological processes for OMW treatment. Trials have been carried out on wastewaters taken from one of the largest three-phase mills of Italy, located in Quarrata (Tuscany), as well as on synthetic solutions. Ozone and Fenton's reagents applied both on OMWs and on phenolic synthetic solutions guaranteed polyphenol removal efficiency up to 95%. Aerobic biological treatment was performed in a batch reactor filled with raw OMWs (pH = 4.5, T = 30 degrees C) without biomass inoculum. A biomass rich of fungi, developed after about 30 days, was able to biodegrade phenolic compounds reaching a removal efficiency of 70%. Pretreatment of OMWs by means of oxidation increased their biological treatability.  相似文献   

6.
A promising system consisting of Up-flow Anaerobic Sludge Blanket (UASB) and Down-Flow Hanging Sponge (DHS) system was investigated for removal of COD, BOD(5) fractions, ammonia and faecal coliform from domestic wastewater. The combined system was operated at different HRTs of 16, 11 and 8 h. The results indicate that increasing the total HRT from 8 to 16 h significantly (p < 0.05) improves the COD(total) and BOD(5 total) removal mainly as a result of a higher removal of COD(soluble), BOD(soluble), COD(particulate) and BOD(particulate). The main part of coarse suspended solids was removed in the UASB reactor (76.4+/-18%) and the remaining portion was adsorbed and/or enmeshed and degraded in the biomass of the DHS system. The combined system achieved a substantial reduction of total suspended solids (TSS) resulting in an average overall percentage removal of 94+/-6% (HRT = 16 h) and 89.5+/-7.8% (HRT = 8 h). Faecal coliform reduction was significantly improved when increasing the total HRT from 8 to 16 h. Residual counts of faecal coliform were 3.1 x 10(3)/100 ml at a total HRT of 16 h, and 2.8 x 10(4)/100 ml at total HRT of 8 h, corresponding to overall removal efficiency of 99.97+/-0.03 and 99.6+/-0.3% respectively. Despite the increase of ammonia concentration as a result of protein hydrolysis in the UASB reactor, a substantial removal of ammonia was achieved in the DHS system. The results obtained show that decreasing the OLR imposed to DHS system from 2.6 to 1.6 kg COD/m(3).d significantly (p < 0.05) improves the removal efficiency of ammonia by a value of 29%. However, the removal efficiency of ammonia is not further increased when decreasing the OLR from 1.6 to 1.3 kg COD/m(3).d. The discharged sludge from UASB + DHS system exerts a good settling property and partially stabilized.DHS profile results have shown that the major part of COD, BOD(5), and TSS was removed in the upper part of the system, consequently, the nitrification process was occurring in the lower part of the DHS system.  相似文献   

7.
In urbanising catchments the variability of particulate matter (solids) and oxygen demanding constituents of wet weather and dry weather characteristics result in variable treatment effectiveness from physical unit operations and biological unit processes. Higher organic concentrations during dry weather flow are more amenable to biological unit processes while the higher inorganic loads generated largely by urban wet weather constituents and much larger flows can be more effectively treated or conditioned by physical unit operations, including ideally preceded by hydrologic controls. This study examines the relationships between total chemical oxygen demand (COD)(t), dissolved chemical oxygen demand (COD)(d), particulate chemical oxygen demand (COD)(p) and solids, measured as total suspended solids (TSS). Results also provide an index for selection and optimisation of treatment operations for combined sewer overflow (CSO) loads.  相似文献   

8.
Co-digestion of waste activated sludge (WAS) with agro-industrial organic wastewaters is a technology that is increasingly being applied in order to produce increased gas yield from the biomass. In this study, the effect of olive mill wastewater (OMW) on the performance of a cascade of two anaerobic continuous stirred tank (CSTR) reactors treating thickened WAS at mesophilic conditions was investigated. The objectives of this work were (a) to evaluate the use of OMW as a co-substrate to improve biogas production, (b) to determine the optimum hydraulic retention time that provides an optimised biodegradation rate or methane production, and (c) to study the system stability after OMW addition in sewage sludge. The biogas production rate at steady state conditions reached 0.73, 0.63, 0.56 and 0.46 l(biogas)/l(reactor)/d for hydraulic retention times (HRTs) of 12.3, 14, 16.4 and 19.7 d. The average removal of soluble chemical oxygen demand (sCOD) ranged between 64 and 72% for organic loading rates between 0.49 and 0.75 g sCOD/l/d. Reduction in the volatile suspended solids ranged between 27 and 30%. In terms of biogas selectivity, values of 0.6 l(biogas)/g tCOD removed and 1.1 l(biogas)/g TVS removed were measured.  相似文献   

9.
The paper reports the results of an investigation on a H-SSF constructed wetland for tertiary treatment in a small community located in eastern Sicily, Italy. The system is designed to reuse wastewater for the irrigation of olive orchards covering about 150 hectares. From March 2001 to September 2005, wastewater samples were collected and the following chemical-physical parameters were determined according to Standard Methods: temperature, pH, EC, DO, TSS (105degrees C), BOD5, COD, TN, TP. The following microbiological parameters were also evaluated: total coliforms, faecal coliforms, Escherichia coli, faecal streptococci, Salmonella, helminth eggs. Mean removal efficiencies ranged from 77 to 92% (TSS), 37 to 72% (BOD5), 51 to 79% (COD), 97 to 99.5% (E. coli). Removal efficiency of Salmonella and helminth eggs was always 100% in all samples; however, only 150% of total samples matched the limit of E. coli (< 50 CFU/100 mL) fixed by Italian legislation for wastewater reuse.  相似文献   

10.
Hydrogen-driven denitrification using the fiber membrane biofilm reactor (MBfR) was evaluated for consistent operation in tertiary wastewater treatment. The possibility of controlling the process rates, as well as biofilm parameters by supplying limited amounts of electron donor (hydrogen), was tested. Limiting the hydrogen supply proved to be efficient in controlling the biofilm growth and performance of the MBfR. Denitrification rates remained unchanged for both synthetic wastewater (SWW) and real municipal wastewater (MWW) effluent as well through the fluctuations in the substrate (NO3-N) concentration. The average denitrification rates were 0.50 (+/- 0.02) g NO3-N per day per m2 for SWW and 0.59 (+/- 0.04) g NO3-N per day per m2 for MWW. Biofilm density rather than thickness was the determining factor in substrate diffusion and biofilm sloughing, ultimately determining operating stability. Limited hydrogen supply assured constant volatile solids (VS) concentration in the biofilm. It was determined that VS/TS ratio higher than 0.25 assured stable biofilm operation. Decrease of VS/TS ratio below 0.25 led to shearing of the nonbiological outer layers of the biofilm. The values of chemical oxygen demand (COD), volatile suspended solids (VSS) and total suspended solids (TSS) in the final effluent were stable and well below wastewater effluent guidelines. Substitutions of bicarbonate with gaseous carbon dioxide as the carbon source did not affect denitrification rates despite lower than optimum pH conditions.  相似文献   

11.
The objective of this research is to investigate the performance of blend cellulose acetate (CA)-polyethersulphone (PES) membranes prepared using microwave heating (MWH) techniques and then compare it with blend CA-PES membranes prepared using conventional heating (CH) methods using bovine serum albumin solution. The superior membranes were then used in the treatment of palm oil mill effluent (POME). Various blends of CA-PES have been blended with PES in the range of 1-5 wt%. This distinctive series of dope formulations of blend CA/PES and pure CA was prepared using N, N-dimethylformamide (DMF) as solvent. The dope solution was prepared by MW heating for 5 min at a high pulse and the membranes were prepared by phase inversion method. The performances of these membranes were evaluated in terms of pure water and permeate flux, percentage removal of total suspended solids (TSS), chemical oxygen demand (COD) and biochemical oxygen demand (BOD). The results indicate that blend membranes prepared using the microwave technique is far more superior compared to that prepared using CH. Blend membranes with 19% CA, 1-3% PES and 80% of DMF solvent were found to be the best membrane formulation.  相似文献   

12.
The management of the wastewater originating from olive oil producing industries poses a serious environmental problem. Recently, two-phase production of olive oil has been developed, leading to almost complete elimination of the bulk of the generated wastewater and, is thus regarded as an environmentally friendly technology. However, the main waste stream (olive pulp) is a slurry material characterized by high solids concentration (approximately 30%), requiring stabilisation before its final disposal. The anaerobic digestion of olive pulp is studied in this work under mesophilic and thermophilic conditions in CSTR-type digesters. The digesters were fed with water-diluted (1:4) olive pulp at an HRT of 20 days and an OLR of 3.94 kg COD m(-3) d(-1). In order to study the process kinetics, the digesters were subjected to impulse disturbances of different substrates. The IWA anaerobic digestion model was used to simulate the reactors' response. Some key process parameters, such as the specific maximum uptake rate constants and the saturation constants for the volatile fatty acids degradation were estimated and compared with the standard values suggested by the ADM1.  相似文献   

13.
Grey water from a university facilities building in Cairo, Egypt was analysed for basic wastewater parameters. Mean concentrations were calculated based on grab samples over a 16-month period. Values for chemical oxygen demand (COD) and nutrients exceeded values reported in a number of other studies of grey water, while coliform counts were also high. A submerged membrane bioreactor (SMBR) system using a hollow fibre ultrafiltration membrane was used to treat the grey water with the aim of producing effluent that meets reuse guidelines for agriculture. A test run for 50 days at constant transmembrane pressure resulted in very good removal for key parameters including COD, total suspended solids (TSS), colour, turbidity, ammonia nitrogen, anionic surfactants, and coliform bacteria. High standard deviations were observed for COD and coliform concentrations for both monthly grab samples and influent values from the 50-day SMBR experiment. SMBR effluent meets international and local guidelines for at least restricted irrigation, particularly as pertains to COD, TSS, and faecal coliforms which were reduced to mean treated values of 50 mg/L, 0 mg/L (i.e., not detected), and <50 cfu/100 mL, respectively.  相似文献   

14.
Three calibration methods were applied to UV/VIS spectra recorded in the influent of six wastewater treatment plants (WWTPs) to measure total COD (CODtot), filtered COD (CODfil), nitrate and nitrite nitrogen (NO(x)-N) and total suspended solids (TSS). It could be shown that a calibration of the sensor using data sets from four Swiss WWTPs leads to an improvement of the precision in comparison to the global calibration provided by the manufacturer. A calibration to the specific wastewater matrix always improves the results and gives the highest accuracy. For CODtot a mean coefficient of variation CVx of 12.5% could be reached, whereas for NOx-N only weak results were achieved (average CVx = 36%).  相似文献   

15.
Common effluent treatment plants (CETPs) have been installed and are in operation at numerous industrial clusters throughout India. They serve to reduce effluent treatment cost, provide better collective treatment, and reduce land cost for small-scale industrial facilities that cannot afford individual treatment plants. Optimum working conditions for treatment of effluent to be at par with discharge standards is a major mandate for any CETP. In this study, the reliability and removal efficiencies (REs) of a CETP in the industrial area of Maharashtra State in India were examined. An established methodology was adopted to determine the effectiveness of the CETP in terms of biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), and oil and grease (O&G) concentrations. The CETP's compliance with respect to design standards and its operation were studied in detail. This paper highlights the results of RE and the coefficient of determination (R2) values obtained from the CETP data, estimates the pollutants removed at the highest and lowest rates over a period of time, and highlights the reasons for problem areas along with remedial measures. It was observed that, except O&G, all the parameters (BOD, COD, and TSS) showed fluctuations in removal efficiencies and their reliabilities. This situation can be improved by releasing effluent containing hydraulic and organic loading to the CETP as per standards and optimizing treatment processes, especially primary clari-flocculators and aeration tanks, both of which are important units of any CETP.  相似文献   

16.
The performance of an upflow anaerobic sludge blanket (UASB) reactor and a hybrid UASB-filter reactor was investigated and compared for the treatment of domestic wastewater at different operational temperatures (28, 20, 14 and 10 degrees C) and loading rates. For each temperature studied a constant CODt removal was observed as long as the upflow velocity was lower than 0.35 m/h. At these upflow velocities similar removals were observed for both reactor types at 28 and 20 degrees C, 82 and 72% respectively. However, at 14 and 10 degrees C the UASB reactor showed a better COD removal (70% and 48%, respectively) than the hybrid reactor (60% and 38%). COD removal resulted from biological degradation and solids accumulation in the reactors. At 28 degrees C, a constant 200 g sludge mass was observed in both reactors and COD removal was attributed to biological degradation only. At lower temperatures, solids accumulation was observed in addition to biological degradation with an increase in reactor sludge as the temperature decreased. The decrease in biological degradation at lower temperatures was offset by solids accumulation and explains the similar overall COD removal efficiency observed at 28 degrees C, 20 degrees C and 14 degrees C. The decrease in temperature was also followed by an increase in the effluent TSS concentration in both reactors. At 14 and 10 degrees C a lower effluent TSS concentration and better performance was observed in the UASB reactor.  相似文献   

17.
To assess the magnitude of water quality decline in the Turag River of Bangladesh,this study examined the seasonal variation of physicochemical parameters of water,identified potential pollution sources,and clustered the monitoring months with similar characteristics.Water samples were collected in four distinct seasons to evaluate temperature,pH,dissolved oxygen(DO) concentration,five-day biochemical oxygen demand(BOD_5),chemical oxygen demand(COD),electrical conductivity(EC),chloride ion(Cl~-) concentration,total alkalinity(TA),turbidity,total dissolved solids(TDS) concentration,total suspended solids(TSS) concentration,and total hardness(TH) using standard methods.The analytical results revealed that 40% of water quality indices were within the permissible limits suggested by different agencies,with the exception of EC,Cl~-concentration,TA,turbidity,DO concentration,BOD_5,and COD in all seasons.Statistical analyses indicated that 52% of the contrasts were significantly different at a 95% confidence interval.The factor analysis presented the best fit among the parameters,with four factors explaining 94.29% of the total variance.TDS,BOD5,COD,EC,turbidity,DO,and Cl-were mainly responsible for pollution loading and were caused by the significant amount of industrial discharge and toxicological compounds.The cluster analysis showed the seasonal change in surface water quality,which is usually an indicator of pollution from rainfall or other sources.However,the values of different physicochemical properties varied with seasons,and the highest values of pollutants were recorded in the winter.With the change in seasonal temperature and increase in rainfall,the seasonal Turag River water followed a self-refining trend as follows:rainy season prewinter summer winter.  相似文献   

18.
The soft drink production is an important sector in the manufacturing industry of Mexico. Water is the main source in the production of soft drinks. Wastewater from bottle washing is almost 50% of the total wastewater generated by this industry. In order to reduce the consumption of water, the water of the last bottle rinse can be reused in to the bottle pre-rinse and pre-washing cycles. This work presents the characterization of the final bottle washing rinse discharge and the treatability study for the most appropriate treatment system for recycling. Average characteristics of the final bottle wash rinse were as follows: Turbidity 40.46 NTU, COD 47.7 mg/L, TSS 56 mg/L, TS 693.6 mg/L, electrical conductivity 1,194 microS/cm. The results of the treatability tests showed that the final rinse water can be used in the pre-rinse and pre-washing after removing the totality of the suspended solids, 80% of the COD and 75% of the dissolved solids. This can be done using the following treatment systems: filtration-adsorption-reverse osmosis, or filtration-adsorption-ion exchange. The installation of these treatment techniques in the soft drink industry would decrease bottle washing water consumption by 50%.  相似文献   

19.
A novel technology suitable for centralised and decentralised wastewater treatment has been developed, extensively tested at laboratory-scale, and trialled at a number of sites for populations ranging from 15 to 400 population equivalents (PE). The two-reactor-tank pumped flow biofilm reactor (PFBR) is characterised by: (i) its simple construction; (ii) its ease of operation and maintenance; (iii) low operating costs; (iv) low sludge production; and (v) comprising no moving parts or compressors, other than hydraulic pumps. By operating the system in a sequencing batch biofilm reactor (SBBR) mode, the following treatment can be achieved: 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and total suspended solids (TSS) reduction; nitrification and denitrification. During a 100-day full-scale plant study treating municipal wastewater and operating at 165 PE and 200 PE (Experiments 1 and 2, respectively), maximum average removals of 94% BOD5, 86% TSS and 80% ammonium-nitrogen (NH4-N) were achieved. During the latter part of Experiment 2, effluent concentrations averaged: 14 mg BOD5/l; 32 mg COD(filtered)/l; 14 mg TSS/l; 4.4 mg NH4-N/l; and 4.0 mg NO3-N/l (nitrate-nitrogen). The average energy consumption was 0.46-0.63 kWh/m3(treated) or 1.25-1.76 kWh/kg BOD5 removed. No maintenance was required during these experiments. The PFBR technology offers a low energy, minimal maintenance technology for the treatment of municipal wastewater.  相似文献   

20.
In this study, treatment of slaughterhouse wastewater by electrocoagulation was investigated in batch system using Fe electrodes. The effect of various variables such as electrode number, current density and operating time was tested. Pollutant removal efficiency increased with increasing electrode number and operating time. The biochemical oxygen demand (BOD(5))(,) chemical oxygen demand (COD), total suspended solid (TSS), and total nitrogen (TN) removal efficiencies using eight electrodes at a contact time of 50 min and a current density of 10 A/m(2) were 66, 62, 60, and 56%, respectively. Higher electrode numbers will allow shorter operating times to achieve certain removal efficiencies. Also, removal efficiencies increased by increasing the current density; the highest removal efficiencies of BOD(5,) COD, TSS, and TN at a contact time of 50 min and a current density of 25 A/m(2) were 97, 93, 81, and 84%, respectively. The results also show that the reactor pH varies directly with the current density; at 25 A/m(2), the reactor pH increased from an initial value of 7.1 to 7.7 after 50 min. The experimental results showed that the kinetics of BOD(5), COD, TSS and TN removal could be fitted adequately using a first order kinetic model (higher R(2)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号