首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 776 毫秒
1.
采用溶胶-凝胶法,以醋酸锌和氢氧化锂为主要原料制备了纳米氧化锌溶胶;再以其为构造单元在阳极氧化铝模板(AAO)中通过减压渗透法制备了氧化锌纳米管阵列.同时利用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)和能谱(EDS)对所得的氧化锌纳米颗粒、纳米管进行了分析.结果表明,所得的氧化锌纳米颗粒,粒径为2~5nm,分布较窄,属于纤锌矿型六方晶系;所得氧化锌纳米管,阵列结构规整,外径约为300nm,壁厚约为50nm,长度可以达到5μm以上.  相似文献   

2.
载Pt-TiO2纳米管阵列制备及其光电催化性能   总被引:1,自引:0,他引:1  
采用阳极氧化法在纯钛箔表面制备TiO2纳米管,再用直流电沉积法在纳米管内沉积Pt,制备出载Pt-TiO2纳米管电极.并采用场发射扫描电子显微镜(FESEM)、X射线衍射(XRD)对其进行表征.研究载Pt-TiO2纳米管阵列与TiO2纳米管阵列对有机磷农药敌敌畏(DDVP)的光电催化降解效果,并与光催化、电降解做了简单对比.结果表明:所制Pt-TiO2纳米管存在锐钛矿晶型TiO2,其饱合光电流比TiO2纳米管大.与单独光催化、电降解相比,载Pt-TiO2纳米管电极光电催化降解效果更显著.  相似文献   

3.
以氧化铝膜为模板、金属汞为电阴极,采用简单的直流电沉积方法制备出高度有序的镍纳米管阵列。利用扫描电子显微镜、透射电子显微镜、选区电子衍射、能谱仪、X射线粉末衍射和样品振动磁强计对样品进行形貌表征、成分及磁性能分析。结果表明,阵列中的镍纳米管彼此平行,尺寸均匀,纳米管外径为260~360nm;镍纳米管阵列表现出良好的磁各向异性,其易磁化方向垂直于镍纳米管阵列。以金属汞为电阴极是易形成纳米管的关键条件。  相似文献   

4.
采用电子束蒸发方法在透明导电玻璃FTO上沉积Ti金属薄膜,室温条件下在C2H6O2+NH4F中通过恒压阳极氧化法制备出超长TiO2纳米管阵列/FTO电极,并通过场发射扫描电子显微镜(FESEM),透射电子显微镜(TEM),X光电子能谱(XPS),X射线衍射(XRD)及光谱分析等方法对纳米管阵列/FTO电极进行了表征.研究表明,制备出的TiO2纳米管阵列内径43nm,管长5.4μm,经退火处理后得到长度为5μm锐钛矿相TiO2纳米管阵列/FTO透明电极,在可见光波长段的透射率为45%,在400nm波长处有一明显吸收峰.  相似文献   

5.
利用电化学阳极氧化法在乙二醇和氟化铵溶液三电极体系中阳极氧化纯钛箔,制备出具有双面结构的TiO2阵列纳米管。研究了不同电压和电解液含水量对纳米管形貌的影响,通过扫描电子显微镜(SEM)和X射线衍射仪(XRD)分析了TiO2纳米管阵列的微观形貌及物相。  相似文献   

6.
以乙醇铌、乙酸钾和乙酸钠为原料,乙二醇甲醚为溶剂,采用溶胶-凝胶(Sol-Gel)阳极氧化铝(AAO)模板法制备了K0.5Na0.5NbO3(KNN)纳米管阵列.利用热分析确定晶化温度,采用X射线衍射、扫描电子显微镜和透射电子显微镜表征KNN纳米管的物相、形貌和微观结构.结果表明,KNN最佳的晶化温度为700℃;KNN纳米管阵列结晶性良好,为单斜钙钛矿多晶结构,单根纳米管的外径约为200nm,管壁厚约为20nm.对KNN纳米管阵列的铁电性能表征显示,其剩余极化率Pr约为1.86μC/cm2,矫顽场Ec约为0.68kV/cm。  相似文献   

7.
不同制备条件对二氧化钛纳米管阵列及其结构的影响   总被引:1,自引:0,他引:1  
采用阳极氧化法以NH4F/乙二醇为电解液制备高度有序的TiO2纳米管,研究了不同电解液浓度、电解电压、电解时间等参数对TiO2纳米管的影响.在不同温度下对TiO2纳米管进行退火处理.分别利用转靶X射线衍射仪(XRD)和场发射扫描电子显微镜(SEM)对TiO2纳米管阵列的物相结构和形貌变化进行表征.结合氧化过程电流密度变...  相似文献   

8.
为了开发自组织阳极氧化制备TiO2纳米管阵列的新体系,以乳酸/NH4F混合溶液为电解质,研究了阳极氧化制备TiO2纳米管阵列的影响因素及形成机理.采用X射线衍射(XRD)和扫描电子显微镜(SEM)对样品进行检测,并通过观察阳极氧化过程中的电流-时间变化曲线,探讨TiO2纳米管阵列的形成机理.结果表明:阳极氧化电压、时间及电解质溶液的黏度是影响TiO2纳米管阵列结构和形貌的主要因素,在40 v阳极氧化电压下,制备出平均管径高达180 nm的纳米管,所获得的TiO2纳米管阵列为无定型结构,300℃热处理以后转变为锐钛矿型TiO2.  相似文献   

9.
甘源  王大永  洪澜  任山 《材料导报》2015,29(14):1-6
通过在自生长的半导体Cu2S纳米线阵列表面进一步应用电化学表面沉积处理,在纳米线表面形成尺寸更小的Cu2S纳米颗粒结构,实现了在不减小纳米线直径或增加纳米线长度的情况下,有效提高了纳米线阵列光吸收性能。利用I-V循环扫描曲线研究了以Cu2S纳米线阵列为工作电极的Cu2S沉积电位,利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见-近红外分光光度计,对纳米阵列的相结构、微观表面形貌、晶体结构及光吸收能力进行了表征和分析。研究表明:沉积于单斜晶系Cu2S纳米线阵列上的纳米颗粒为斜方晶系Cu2S,沉积后纳米线表面结构改变,粗糙度明显增加,起到了减少纳米线的光反射、优化原纳米线阵列光吸收综合能力的作用。  相似文献   

10.
利用电沉积法在多孔阳极氧化铝模板中组装了镍纳米管阵列,分别利用SEM、TEM、XRD和VSM对镍纳米管的形貌、结构和磁性能进行表征。结果表明,所制备的镍纳米管阵列,属面心立方(fcc)结构,磁滞回线表明制备的镍纳米管阵列具有磁单轴各向异性和单磁畴特性。  相似文献   

11.
本文采用一种简单而有效的电化学方法在硫酸铵体系中利用氧化铝模板(AAO)成功制备出规则有序的Ni的管状纳米阵列.使用这种方法可获得外径约为70nm,内径约为50nm的Ni纳米管.对所得的Ni纳米管进行了扫描电镜(SEM)、透射电镜(TEM)、选区电子衍射图(SAED)和X射线衍射(XRD)分析,结果表明:该方法制备的Ni纳米管高度有序,大小均一,其形貌受控于氧化铝模板的结构,外径与模板的孔径相等.  相似文献   

12.
Semiconductor ZnO nanotube arrays and heterostructures of Cu-ZnO coaxial nanotubes have been synthesized by electrodeposition into porous anodic alumina membranes and subsequent oxidation. Scanning electron microscopy and transmission electron microscopy indicate that the ZnO nanotubular arrays and Cu-ZnO coaxial nanotubular arrays are of large-area and highly ordered. X-ray diffraction patterns show that the nanotubes are polycrystalline. Photoluminescence spectra of the Cu-ZnO nanotubes show that a violet peak, a blue peak and a green peak are centered at 422 nm, 480 nm and 537 nm, respectively. The ordered ZnO nanotube arrays and heterostructures of Cu-ZnO coaxial nanotubes may have promising potential applications in nanodevices.  相似文献   

13.
Ni nanotube arrays with different diameters were fabricated in the pores of the porous anodic alumina membranes by direct current electrodeposition. The crystal structure and micrograph of Ni nanotube arrays were characterized by X-ray diffraction, transmission electron microscopy, and field-emission scanning electron microscopy. The results indicate that Ni nanotubes have no preferred orientation and are polycrystalline structure. The magnetic behaviors of Ni nanotube arrays with different diameters are investigated, and the coercivity of Ni nanotubes depends strongly on their diameters. The size-dependent behavior of the coercivity is qualitatively explained in terms of localized magnetization reversal.  相似文献   

14.
Three-dimensional snowflake-like bismuth sulfide nanostructures were successfully synthesized by simple refluxing at 160 °C in ethylene glycol, using bismuth citrate and thiourea as reactants. The crystal structures and morphologies of the products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and energy dispersive X-ray spectroscopy (EDX). The Bi2S3 nanostructure was built up by highly ordered one-dimensional Bi2S3 nanorods, which was aligned in an orderly fashion. Ethylene glycol plays a critical role in the creation of bismuth sulfide three-dimensional nanostructures, which serves as an excellent solvent and structure director. Bismuth citrate, a linear polymer, also makes for the formation of the three-dimensional nanostructures.  相似文献   

15.
Nickel alumina nanotubes templated by dodecylsulfate assemblies have been successfully synthesized for the first time using a sonochemical process. These nanotubes were characterized by scanning electron microscope (SEM), a transmission electron microscope (TEM), X-ray diffraction (XRD). The formation mechanism of these nanotubes is also discussed. They were also calcined to study the change of the nanostructure morphology with the temperature. It was found that the nanotubes transformed from short nanotubes into dendritic structures of aggregations of nanoparticles into monodisperse nanoparticles, and these nanostructures hold high specific surface area.  相似文献   

16.
Honeycomb-shaped and ordered arrays of nanopore AAO template with a uniform pores size was produced utilizing a two-step an anodization process. Highly ordered SnO2 nanorods arrays have been selectively fabricated via a convenient (immerse and filtration) technique and (vacuum and drop) setting using anodic aluminum oxide (AAO) as a hard template. The morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (FESEM), and Energy-dispersive X-ray spectroscopy (EDX) techniques. The optical characterizations were examined by UV-VIS and Photoluminescence (PL). Scanning microscopy images indicate that the SnO2 nanorods are relatively uniform with the outer diameter matching well with the pore diameter. XRD and EDX indicated that these polycrystalline SnO2 nanostructures with well-defined composition were obtained.  相似文献   

17.
High dense Ni nanotube arrays have been successfully fabricated using electrochemical method with the assistance of anodic aluminum oxide (AAO) template from NiSO4 aqueous solution without any additive. Field emission scanning electron microscope (FE-SEM) results indicate that the pores of AAO template are high uniform and all the pores are filled with Ni nanotubes. Transmission electron microscope (TEM) results demonstrate that the diameter of Ni nanotubes is about 65 nm. The electron diffraction (ED) pattern results show that the Ni nanotubes are polycrystalline. X-ray diffraction (XRD) pattern shows that the electrodeposited nickel is hexagonal crystal structure.  相似文献   

18.
Semiconductor ZnS nanotubes arrays were synthesized in the pores of the porous anodic alumina (PAA) membranes by using metal organic chemical vapor deposition (MOCVD) template methods. The morphology and structure of the ZnS nanotubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED) and X-ray diffraction (XRD). It is found that the ZnS nanotubes with diameters in range of 140–250 nm and the length up to tens of microns are polycrystalline. Energy-dispersion spectroscopy (EDS) and X-ray photoelectron spectroscopy analysis (XPS) indicate that the stoichiometric ZnS was formed. A green-blue emission band centered at 510 nm was observed in the photoluminescence spectrum of the ZnS nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号