首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
一般工业技术   7篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
排序方式: 共有7条查询结果,搜索用时 46 毫秒
1
1.
采用化学溶液沉积法,在ZnO纳米颗粒膜修饰的FTO导电玻璃基底上,制备了ZnO纳米棒阵列。用X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)对样品进行表征。研究结果表明所制备的ZnO纳米棒为六方纤锌矿相单晶结构,沿c轴择优取向生长,平均直径约为40nm,长度约为900nm;ZnO纳米棒阵列生长致密,取向性较一致。以曙红Y敏化的ZnO纳米棒阵列膜为光阳极制作了染料敏化太阳能电池原型器件,在光照强度为100mW/cm2下,其开路电压为0.418V,短路电流为0.889mA/cm2,总的光电转换效率为0.133%。  相似文献   
2.
为研究薄膜的光催化特性,通过金属有机配合物前驱体热分解制备(La,Sr)CoO3(LSCO)薄膜,采用热分析研究其热分解过程,通过X射线衍射进行物相分析,并制备ZnO纳米棒-单层LSCO薄膜复合结构,进行降解甲基橙有机模拟污染物实验。结果表明,在焙烧温度为550℃时可以得到质量较好的LSCO薄膜,且LSCO具有良好的结晶性;光催化降解实验证明LSCO能提高ZnO纳米棒的光催化活性,提高有机污染物的降解率。  相似文献   
3.
首次在室温条件下超声方法直接将金属Zn制备ZnO纳米颗粒薄膜。利用滚压振动磨机械研磨的Zn粉作为原料,采用独特的油相水相混合溶液作为分散液,超声分散打破软团聚使金属Zn纳米颗粒水解得到了分散性较好的纳米粒子,并且可以利用该纳米粒子简单地制备出均匀致密的ZnO纳米粒子薄膜。利用X射线粉末衍射仪(XRD)、透射电子显微镜(TEM)对产物进行了表征。结果表明,采用该方法可制得具有密排六方结构的ZnO纳米颗粒,并且该产物分散较好。原子力显微镜(AFM)、静电力显微镜(EFM)表明利用该纳米粒子制备的薄膜致密均匀,EFM显示纳米粒子表面电学性质有较大差异。探针台I-V测试显示不同原料Zn粉制备出的ZnO纳米颗粒薄膜可以获得不同导通电压从而获得不同的整流效果。该方法在室温条件下由Zn粉制备出ZnO纳米颗粒和薄膜,为制备不同维度ZnO纳米结构提供了新思路,同时也为制备、改善整流器件提供了创新和经济的途径。  相似文献   
4.
不同制备条件对二氧化钛纳米管阵列及其结构的影响   总被引:1,自引:0,他引:1  
采用阳极氧化法以NH4F/乙二醇为电解液制备高度有序的TiO2纳米管,研究了不同电解液浓度、电解电压、电解时间等参数对TiO2纳米管的影响.在不同温度下对TiO2纳米管进行退火处理.分别利用转靶X射线衍射仪(XRD)和场发射扫描电子显微镜(SEM)对TiO2纳米管阵列的物相结构和形貌变化进行表征.结合氧化过程电流密度变...  相似文献   
5.
利用滚压振动磨在室温条件下将金属锌粉制备成尺寸在20~30nm的Zn颗粒,在260℃预热纳米Zn颗粒并使其与常温常压水蒸气反应生成ZnO与Zn的复合结构。将水解产物作为催化剂在完全避光的暗室条件下对甲基橙进行降解实验,在60min内甲基橙的降解率即可达到80%以上,说明这种纳米ZnO/Zn复合结构对甲基橙具有优异的暗室催化效果,且反应过程符合拟一级动力学方程。分析其原因可能为机械力作用使得纳米结构内部存在大量晶格缺陷,形成电荷不均匀区域,并以电子空穴对的形式存在。同时在水解反应过程中,未反应的Zn颗粒附着在ZnO纳米棒上,形成金属-半导体复合结构,可有效降低电子空穴的复合几率,从而增大ZnO纳米结构的催化效率。  相似文献   
6.
简述了二氧化钛的光催化机理。针对其禁带宽度较大,只能被小于387nm的紫外光所激发的缺点,综述了近年来国内外针对纳米TiO2可见光催化的改性方法和改性机理研究进展,包括离子掺杂、半导体复合、表面光敏化等方法。最后展望了提高纳米TiO2可见光光催化活性研究的前景。  相似文献   
7.
颗粒碰撞阻尼是一种被动式振动控制器,其中颗粒材料在冲击过程中的尺度和形貌变化必然对其减振性能产生重要影响。文中初次探讨了带有中值粒度为35微米的锌颗粒的颗粒碰撞阻尼器在96小时内对正弦激励悬臂梁的阻尼减振的时效性。研究证明,主系统的响应在所考察的时间历程内出现了三次微幅上升,它是锌颗粒材料在冲击作用下结构和能态变化的结果。首先,随着冲击的进程,颗粒的冷焊效应阻碍了冲击器的运动速度,降低了冲击器的动量交换功能。第二,颗粒应变能和层错能的下降降低了系统的不可逆能耗。第三,颗粒的细化使其本身缺陷减少,进一步细化的难度增加,也使得系统内的不可逆能耗不断减小。这是主系统的响应随着振动历程出现了两次阶跃性微幅上升的主要原因。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号