首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
《煤矿安全》2019,(11):169-174
为了研究中低煤阶煤孔隙特征及其对瓦斯放散特性的影响,对采集的中低煤阶长焰煤、气煤、焦煤和1/3焦煤4个煤类共计14组样品进行了煤工业分析、煤岩分析、液氮吸附和瓦斯放散初速度测试,结合分形理论研究了中低煤阶煤比表面积、孔容和孔隙分布特征及其瓦斯放散特性。结果表明:中低煤阶煤孔比表面积孔径分布主要以小孔和微孔为主,孔隙形态为以一端开口的孔为主,含有少量两端开口的孔,部分样品含有少量墨水瓶形孔。中低煤阶煤孔隙具有较好的分形特征,孔比表面积、孔容与分形维数具有明显的对数关系。中低阶煤瓦斯放散初速度较小,瓦斯放散初速度随着分形维数增大而减小,随着平均孔径的增大而增大。随着各孔径段孔容积、孔比表面积含量增加瓦斯放散初速度均呈负对数减小趋势,各孔径段比例和煤孔隙形态类型的细微变化对瓦斯放散初速度的影响不大。  相似文献   

2.
为揭示低阶煤孔隙结构对瓦斯吸附性能的影响,选取新疆准南煤田9个典型矿井低阶煤样,进行低温氮吸附及瓦斯等温吸附试验,研究低阶煤的吸附孔特征参数及其与瓦斯吸附参数之间的关系。结果表明:试验范围内,准南煤田低阶煤等温吸附瓦斯曲线仍可用Langmuir方程表征;低阶煤的平均孔径越大,孔隙间的作用力越小,体积吸附常数、瓦斯吸附量越小,压力吸附常数、吸附饱和度越大;随着煤的比表面积、孔容及各孔径下的比表面积和孔容含量的增大,体积吸附常数、瓦斯吸附量增大,而压力吸附常数、吸附饱和度减小;在研究尺度范围内孔隙分形特征显著,体积吸附常数、瓦斯吸附量与分形维数呈正线性关系,压力吸附常数、吸附饱和度与分形维数呈负线性关系。  相似文献   

3.
为研究新疆阜康矿区煤的吸附孔分形特征,进行了低温氮吸附试验,采用BET模型和BJ H模型计算得到煤的孔隙比表面积及体积,应用FHH模型计算煤的孔隙分形维数,分析了分形维数与煤质参数及孔隙参数关系。试验结果表明:阜康矿区煤的孔隙A=D一3在研究尺度范围内分形特征明显,分形维数为2.25045~2.56277;煤的孔隙分形维数与水分呈负相关关系,与灰分呈正相关关系,与固定碳含量呈二次函数关系,与挥发分关系不明显;分形维数与孔隙直径为负相关关系,与孔隙比表面积、孔隙体积呈正相关关系;分形维数与中孔比表面积及体积占比呈负相关关系,与微孔和过渡孔体积占比呈正相关性,但与两者比表面积占比无明显关系。  相似文献   

4.
为提高矿井煤与瓦斯突出预测的准确性,对经过干燥处理的不同含水量的无烟煤、焦煤和长焰煤的瓦斯放散初速度进行了测定。结果表明:水分对无烟煤、焦煤和长焰煤的瓦斯放散初速度均有影响,同一煤阶煤样的水分越大,瓦斯放散初速度越小;且瓦斯放散初速度随水分增加呈指数式减小,水分减小了煤样的瓦斯吸附量是造成瓦斯放散初速度减小的根本原因;水分对无烟煤瓦斯放散初速度影响最大,长焰煤居中,焦煤最小,其原因为不同煤阶煤的孔隙特性不同。  相似文献   

5.
煤储层中孔隙结构的发育程度决定了煤体瓦斯的吸附性能,通过低温液氮吸附实验测试了长焰煤、焦煤和无烟煤3种不同变质程度煤样的孔隙结构;基于分形理论对孔隙结构进行了量化表征,并结合煤的甲烷等温吸附实验,深入分析了不同变质程度煤孔隙结构对甲烷吸附特性的影响。结果显示:变质程度与孔隙分形维数D1呈现出“浴盆式”变化规律,与分形维数D2符合线性负相关关系;而煤样的微孔比表面积和孔容均与吸附常数a呈正相关关系,即微孔比表面积和孔容越大,煤的吸附能力越强;随着孔隙分形维数D1的增加,吸附常数a呈现出近似线性增长趋势,煤体孔隙结构越不光滑,比表面积也会越大,从而使得煤的甲烷极限吸附量也会有所升高。  相似文献   

6.
基于低温氮吸附试验,从吸附-脱附曲线形态、孔径分布和FHH分形特征等方面分析了新疆和什托洛盖盆地西山窑组低阶煤孔隙结构特征,并从镜质体反射率、煤岩显微组分、工业分析组分方面探讨了煤孔隙结构与煤质之间的关系。结果表明:孔隙类型以微孔和小孔为主,孔隙形态多以"墨水瓶"状孔和开放型孔为主,存在少量一端封闭型孔;孔隙分形维数越大,孔隙比表面积和孔容越大,平均孔径越小,孔隙系统越趋于复杂;孔容和BET比表面积随惰质组含量增加而增大,随镜质组含量增加而减小,二者与矿物质含量关系整体呈不对称的"V"字形,在矿物质含量为1%处转折。此外,镜质组反射率、水分和灰分的增加,降低了孔容和BET比表面积。  相似文献   

7.
为了研究高阶原生煤和构造煤的孔隙结构与分形特征,采用压汞法、低压N2吸附法和低压CO2吸附法对所选的煤样进行了研究,比较了原生煤与构造煤之间的孔径分布、孔容和比表面积、孔型和连通性以及分形维数差异。结果表明:构造煤以开放型孔为主,并比原生煤具有更好的连通性;原生煤和构造煤二者的Dubinin-Radushkevic(D-R)和微孔比表面积之和都占到了总比表面积的99%以上,从而为瓦斯的吸附提供了更多的空间;构造煤较大的孔容和比表面积造成其高瓦斯含量的特征;构造煤渗流孔孔隙简单,吸附孔孔隙结构复杂性较低,孔隙表面相对光滑,提高了瓦斯在孔隙中的运移能力。  相似文献   

8.
《煤矿安全》2017,(1):9-12
为完善贵州矿区煤孔隙结构及瓦斯吸附特性,促进煤层气的抽采和防治煤与瓦斯突出,以贵州矿区4个不同矿井煤样为研究对象,利用扫描电镜、压汞和等温吸附等手段进行测试。结果表明:贵州煤大量发育裂隙和次生孔隙,这些裂隙和孔隙是煤层瓦斯的吸附场所和流通通道;贵州煤的孔容在0.146 8~0.228 9 m L/g之间,孔比表面积在15.434~18.260 m~2/g之间,平均孔径在33.4~51.4 nm之间,煤中大孔及裂缝是孔体积的主要贡献者,5~10 nm之间的孔隙是煤比表面积的主要贡献者,煤中开放孔较少,孔隙连通性一般;瓦斯的吸附能力与孔体积、孔比表面积具有良好的正相关性,Langmuir单分子层吸附方程适合煤对甲烷的吸附。  相似文献   

9.
煤层注水对防突具有显著效果,而煤层孔隙特性是影响瓦斯吸脱附及渗流的重要因素,为了从孔隙角度揭示不同注水压力对原煤体甲烷吸脱附性能的影响。选取首山矿己15-12070工作面进行煤层注水现场实验,使用氮吸附法得出各煤样孔隙特性并用分形理论计算孔隙粗糙度,使用静态容量法测出各煤样吸脱附参数。结果表明:注水后各孔径段孔隙量均有所增加,注水压力与比表面积、孔容及分形维数呈线性正相关关系;孔隙特征参数与甲烷吸脱附性能呈线性正相关关系;各煤样均出现甲烷吸脱附迟滞现象,且注水压力越高,甲烷吸附能力越强,脱附迟滞程度越大。煤层注水压力越大,煤的孔裂隙数量会增多且粗糙度增大,煤体倾向于保留更多的瓦斯。  相似文献   

10.
为研究不同变质程度煤孔隙结构分形特征及其对瓦斯吸附特性的影响,通过压汞试验测试了9组不同变质程度煤样孔隙结构,利用Menger海绵模型分析了不同变质程度煤孔隙结构分形特征,结合煤样吸附常数,研究了孔隙结构分形特征对瓦斯吸附特性的影响。研究结果表明,煤孔隙在不同孔径段具有不同的分形特征,渗流孔分形维数D_1和吸附孔分形维数D_2均随变质程度的增加呈线性增大。煤孔隙分形特征对瓦斯吸附特性具有一定的影响,渗流孔分形维数D_1与吸附常数b呈良好的线性关系,与极限吸附瓦斯量a的关联性不大,表明渗流孔分形维数D_1对吸附瓦斯速率影响较大,对吸附能力影响较小;吸附孔分形维数D_2与极限吸附量a呈正相关关系,与吸附常数b关联关系不明显,说明吸附孔分形维数D_2对瓦斯吸附能力影响较大,对吸附瓦斯速率影响不明显。  相似文献   

11.
李友谊  王宇红  杨昌永 《中州煤炭》2019,(4):104-108,113
煤的孔隙特征控制着煤的吸附、扩散和渗流特性,采用低温液氮吸附实验对成庄井田3号煤孔隙特征进行了研究。结果表明:煤中孔径小于4 nm的孔隙多为一端开口孔,孔径大于4 nm的孔隙多为两端开口的孔、墨水瓶孔和少量一端开口的孔;煤中孔隙主要为过渡孔和微孔,大孔、中孔不甚发育,使得煤孔比表面积相对较大、孔容相对较小,有利于煤层气的吸附、凝聚储集和扩散运移。  相似文献   

12.
司书芳  王向军 《煤矿安全》2012,43(12):26-29
煤的粒径大小对煤的孔隙结构会产生一定的影响,从而导致煤的瓦斯吸附性能有所变化。基于气煤和肥煤的低温氮吸附实验的基础上,通过分析粒径大小对孔体积、孔比表面积与孔径分布的影响,根据孔体积与孔径分布关系图,找出一定的规律,然后再进一步考察煤的粒径大小对孔隙结构的影响规律,考察结果表明:煤的粒径影响的下限是在0.074~0.2 mm之间的粒径,而影响上限可能是大于3 mm的粒径,并认为粒径较大时会影响孔隙结构真实值的反映。  相似文献   

13.
中梁山南矿构造煤吸附孔分形特征   总被引:21,自引:0,他引:21       下载免费PDF全文
采集华蓥山煤田中梁山南矿9个有代表性的煤层样品进行低温氮吸附实验,分析构造煤吸附孔分形特征及分形维数与气体吸附能力的关系。低温氮吸附、解吸曲线表明不同变形序列构造煤在相对压力0.5~1.0范围内吸附特征各异。在此基础上,运用分形FHH方法得到构造煤分形维数D。研究表明:分形维数D可以表征构造煤吸附孔孔径结构和孔表面的变化关系;分形维数越高,微孔含量越多,孔表面越不规则,孔隙结构非均质性愈强;分形维数大小可反映煤的吸附能力,分形维数增高,吸附能力增强。因此,由构造变形增强引起的高分形维数和复杂的孔隙结构显示出更高的吸附能力。  相似文献   

14.
罗磊  汤达祯  陶树  许浩  李松  孟艳军 《煤炭学报》2016,41(4):941-947
进行探讨。结果显示:褐煤以中大孔为主,微小孔发育有限,主要储集空间孔径在0.1~2.0 μm;长焰煤以微小孔为主,孔容主要来自微小孔,其单位孔容远小于褐煤。在多级孔隙配置的煤储层中划分出达西流、滑脱流、过渡流和分子扩散4种传质方式。褐煤孔隙连通性好,以达西流、滑脱渗流为主;长焰煤微小孔发育,各级孔隙连通性差,以达西流、过渡流及分子扩散为主。相比较而言,纳米级孔隙中吸附甲烷分子层厚及滑脱效应对长焰煤单孔渗流能力的影响更显著,其将会在气藏开发过程中对增产稳产提供有益的支持。  相似文献   

15.
王英伟  王满 《煤炭技术》2020,39(1):98-100
对平顶山矿区主采煤层丁组、戊组和己组煤样进行低温氮气吸附试验,分析等温吸附-脱附曲线形态,计算孔体积和比表面积,研究了不同煤层的孔形态及其对瓦斯的吸附-解吸能力。实验结果表明:原始煤层煤样比表面积为0.026~2.988 m^2/g,以小于8 nm的孔为主;孔隙结构复杂,大量存在一端闭合孔和"墨水瓶"孔,增加了煤层瓦斯抽采难度。  相似文献   

16.
张振  王涛  潘晓慧  周滨选  马春元 《煤炭学报》2019,44(11):3564-3570
为研究低成本、高性能脱硫用粉状活性焦的制备技术,采用褐煤为原料,在沉降炉试验台上进行粉状活性焦的制备,通过灰平衡方法分析了粉状活性焦的产率及挥发分含量,通过氮气吸附方法表征褐煤及粉状活性焦的孔容、比表面积及孔径分布,探索了不同温度条件下烟气活化对粉焦快速制备过程中孔隙结构的演变的影响机制,采用分形Frenkel-Halsey-Hill法分析了粉焦孔隙结构的分型特征,采用SO2性能测试装置分析了粉状活性焦的2 h吸附容量并探究粉焦的孔隙结构与SO2吸附性能的关系。结果表明,所获得活性焦的低吸附等温线的类型具备Ⅰ型和Ⅳ型等温线的特征,孔隙结构呈微孔-中孔-大孔的梯级孔结构特征,且以微孔结构为主。随着活化温度的增加,粉焦的产率呈线性下降的趋势,粉焦的比表面积及孔容值先增大后减小。温度为950 ℃时,比表面积最大,最大值为437.74 m2/g;温度为1 050 ℃时,总孔容最大,最大值为0.258 cm3/g;温度为1 200 ℃时,灰熔融造成孔隙堵塞大大降低了粉焦的孔隙结构。分形维数D2与活性焦比表面积变化趋势一致,可以较好的反应粉焦的微孔变化趋势。褐煤基粉焦的SO2吸附穿透曲线分为完全吸附阶段及穿透阶段,两个阶段的吸附由不同的孔隙结构主导,完全吸附阶段为微孔吸附,吸附速率快,吸附量大小取决于微孔,而穿透阶段的吸附量主要取决于中孔。  相似文献   

17.
王浩  司青  罗宪  李枫 《煤矿安全》2020,(4):1-4,9
为探讨过硫酸铵与二氧化氯对贫煤孔隙特征的影响,优选出更加适合贫煤储层改造的氧化剂,对采集自大平矿与告成矿的贫煤煤样进行压汞实验,分析讨论了过硫酸铵与二氧化氯对煤样孔隙度、分形维数和排驱压力等储层基本特征参数以及孔体积、比表面积及其分布的影响。结果表明,二氧化氯能够有效提高煤储层的孔隙度,减小其孔比表面积及分形维数,过硫酸铵则可能导致煤储层总体孔隙度降低,减小孔比表面积,增大其分形维数。二氧化氯与过硫酸铵作用后,煤样大孔孔体积所占比例增加,中、小及微孔体积比例减小,使孔隙分布更加均匀,各类孔比表面积分布变化不大。因此,二氧化氯与过硫酸铵均能够对贫煤储层进行氧化刻蚀,降低其亲甲烷能力,而二氧化氯对煤层气解吸运移的促进作用要优于过硫酸铵。  相似文献   

18.
贾男 《煤矿安全》2021,52(1):53-57
为研究并改善富含矿物质煤体孔隙结构特征,基于X射线衍射和低温氮吸附实验测试了贫瘦煤酸化前后碳酸盐矿物质含量及孔隙结构参数,并根据孔隙分形理论利用FHH模型求得了酸化前后不同孔段的分形维数。结果表明:酸化可以有效溶解煤体孔隙中的矿物质并溶蚀煤基质,减少煤体孔隙中微孔所占比例,增加中孔和大孔的比例,增强了孔隙结构之间的连通性,同时减少了煤的比表面积,有利于吸附态瓦斯向游离态进行转化;煤样低压段分形维数大于中高压段的分形维数,煤体孔隙中微孔结构较中孔大孔结构更加复杂,煤样经酸化后孔隙分形维数变小,煤样孔隙结构趋于简单化。  相似文献   

19.
采集淮南煤田3个不同矿区13-1煤层、焦作矿区中马村煤矿二1煤层不同分层的不同煤体结构煤样进行低温液氮吸附试验,分析研究了不同煤体结构构造煤的孔隙特征。由此将构造煤的低温液氮回线划分为H1、H2、H3三类,构造煤的孔隙划分为4类:两端开口的孔,一端开口的孔,墨水瓶形孔和狭缝形孔。碎裂煤中主要为一端开口的圆筒形孔和两端开口的圆筒形孔;碎粒煤和糜棱煤则主要包含狭缝形平板孔、墨水瓶形孔和一端开口的圆筒形孔。研究表明:构造煤对气体的吸附一般发生在孔径3.3 nm左右的孔隙;随煤体破坏强度增大,比表面积和孔体积的分形维数均在增大。综合孔隙特征研究结果,对糜棱煤、碎粒煤煤层分布发育地区容易引发瓦斯突出的机制进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号