首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Zr-4合金应力松弛过程中的热激活变形与动态应变时效   总被引:1,自引:0,他引:1  
采用应力松弛实验研究了Zr-4合金的热激活变形与动态应变时效现象.结果表明,合金在应力松弛过程中的塑性变形速率随松弛时间的增加而减小,塑性变形速率和松弛结束时的应力降低比率在623 K附近都会出现最小值.对位错运动的激活体积分析发现,锫合金中位错运动的速率控制机制是位错克服溶质原子的障碍,动态应变时效会导致位错运动的激活体积增大,623 K附近动态应变时效最为显著,位错密度会对合金的动态应变时效产生影响.  相似文献   

2.
研究了热挤压态Mg-3Al-3Zn-1Ti-0.6RE镁合金的高温拉伸变形行为和微观组织演变,分析了该合金在温度为623K-723K,应变速率为1x10-4s-1-1x10-2s-1条件下的流变应力随温度和应变速率的变化,归纳了温度、应变速率与流变应力的关系。研究结果表明:温度和应变速率是影响流变应力的主要因素,在变形过程中,流变应力随变形温度的升高和应变速率的降低而减小。在本实验条件下,该合金的变形本构方程可用双曲正弦函数 来描述,应力指数n=3.286,激活能Q=238kJ/mol,表明该合金的高温塑性变形机制主要是位错滑移和攀移。  相似文献   

3.
Flow behavior, strain hardening and activation parameters, i.e. activation volume, stress exponents and normalized free enthalpy of activation, of Ti–46Al–9Nb sheet with near-gamma microstructure have been investigated in tension tests between 700 and 1000 °C. The dependence of yield stress on temperature and strain rate, the course of the strain hardening curves and the values of activation parameters show that thermally activated dislocation mechanisms are mainly involved in the tensile deformation process of the investigated material. At constant temperature the value of the activation volume depends both on plastic strain and strain rate. The activation volume generally decreases with increasing strain. The decrease is particularly well observable for higher strain rates, thus indicating a growing role of thermally activated climb mechanisms governing the process of dynamic recovery. The activation volume calculated for a constant plastic strain (2% in case of this study) is a function of temperature and strain rate. At lower deformation rates, or alternatively at higher temperatures, the activation volume increases. Such behavior indicates a decrease in dislocation density due to the onset of dynamic recrystallization. The analysis of stress exponents and the obtained free enthalpy of activation confirm that different thermally activated processes are acting during deformation under the tensile test conditions studied.  相似文献   

4.
The deformation behavior of AZ31 was examined by compression and tension testes over a wide strain rate and temperature range, strain rate from 10^-3 to 10^3 s^-1, temperature from 300 to 623 K. Analysis of flow behavior and microstructural observations indicate that in tension tests dislocation glide is the most important deformation mechanism in the test strain rate and temperature range, while in compression tests twinning deformation mechanism is important at lower temperature when the strain rate ranges from 10^-3 to 10 s^-1. At 10^3 s^-1 strain rate, dislocation glide and twinning are present at the same time. At the strain rate of 2 964 s^-1, adiabatic shear band can be found easily, even at the strain rate of 1 537 s^-1 adiabatic shear localization zone can be found. In adiabatic shear localization zone, there are fine recrystallization grains. But in adiabatic shear band, the grains cannot be identified by optical microscopy.  相似文献   

5.
在温度为250~450 ℃、应变速率为1×10-4-1 s-1的条件下,对超细晶工业纯钛进行变速率压缩实验,计算超细晶工业纯钛的应变速率敏感性因子和激活体积,并研究超细晶工业纯钛的变形行为。研究结果表明:超细晶工业纯钛在稳态变形阶段存在流变软化效应,这是受变形过程中大角度晶界和位错活动所控制的。超细晶工业纯钛的应变速率敏感性因子和激活体积在数值上都相对较低,应变速率敏感性随着变形温度的升高而增加,但激活体积独立于变形温度。应变速率敏感性和激活体积的数值表明晶粒内部位错之间的交互作用几乎不发生,而位错与晶界之间的交互作用显著影响超细晶工业纯钛的塑性变形。  相似文献   

6.
Hot deformation behavior of Mg-7.22Gd-4.84Y-1.26Nd-0.58Zr magnesium alloy   总被引:1,自引:0,他引:1  
The behavior evolvement of Mg-7.22Gd-4.84Y-1.26Nd-0.58Zr(GWN751K) magnesium alloy during the hot deformation process was discussed.The flow stress behavior of the magnesium alloy over the strain rate range of 0.002 to 2.000 s-1 and in the temperature range of 623 to 773 K was studied on a Gleeble-1500D hot simulator under the maximum deformation degree of 60%.The experimental results showed that the relationship between stress and strain was obviously affected by strain rate and deformation temperature.The flow stress of GWN751K magnesium alloy during high temperature deformation could be represented by the Zener-Hollomon parameter in the hyperbolic Arrhenius-type equation.The stress exponent n and deformation activation energy Q were evaluated by linear regression analysis.The stress exponent n was fitted to be 3.16.The hot deformation activation energy of the alloy during hot deformation was 230.03 kJ/mol.The microstructures of hot deformation were also influenced by strain rate and compression temperature strongly.It was found that the alloy could be extruded at 723 K with the mechanical properties of σ0.2 = 260 MPa,σb = 320 MPa,and δ = 18%.  相似文献   

7.
在变形温度为623-773 K、应变速率为0.01~1.0 s-1、最大变形量为60%条件下,采用Gleeble-1500D热/力模拟机对Mg-6.5Y-2.5Nd-0.6Zr合金热压缩变形流变应力行为进行实验研究.结果表明:在应变速率为1.0 s-1等温压缩时,由变形热引起的温升最大达到25 K,修正后流变应力最大比测量值增加31.2 MPa;而应变速率为0.1 s-1压缩时,流变应力的修正值较测量值先减小后增大,其差值在7.8 MPa以内.根据修正的真应力-真应变曲线,结合包含双曲正弦形式的Arrhenius方程并引入Zener-Hollomon参数建立了流变应力本构方程,运用该方程计算的峰值应力与修正的实验数据吻合很好,其相对误差不超过5%.  相似文献   

8.
The relationship of true stress and true strain of AZ41M magnesium alloy under twin-roll-cast (TRC) and hot compression was analyzed using a Gleeble 1500 machine. Microstructural evolutions of the TRC magnesium alloy under different deformation conditions (strain, strain rate and deformation temperature) were examined using optical microscopy and discussed. The relationship of true stress and true strain predicted that lower deformation temperature and higher strain rate caused sharp strain hardening. Meanwhile, the flow stress curve turned into a steady state at high temperature and lower strain rate. The intermediate temperature and strain rate (623 K and 0.01 s−1) is appropriate.  相似文献   

9.
The mechanical properties of polycrystalline samples of the single phase γ-Ti47Al51Mn2 alloy have been studied during compression tests in a wide range of temperatures (120–1270 K). The flow stress and the work hardening rate are measured during imposed strain rate tests, while the strain rate sensitivity of the stress is examined using both strain rate jumps and stress relaxation experiments. From the temperature, strain and stress dependence of these parameters, it is shown that the investigated temperature domain can be divided into three régimes corresponding to different deformation mechanisms. The results are compared to the data available in the literature and are found to be in good agreement with the dislocation structures and dislocation motion mechanisms that we have previously reported.  相似文献   

10.
采用Gleeble-1500热压缩模拟试验机进行压缩实验,研究ZK60(0.9Y+0.3Nd)镁合金在变形温度623~773K、应变速率0.001~1s-1的范围内的变形行为,计算应力指数和变形激活能,并采用Zener-Hollomon参数法构建合金高温塑性变形的本构关系。结果表明:在实验变形条件下,合金的真应力—真应变曲线为动态再结晶型;在实验温度范围内,应力指数随着变形温度的升高而增大,变形激活能随着变形温度和应变速率的增加而增大。对比ZK60合金,ZK60(0.9Y+0.3Nd)合金的变形激活能提高38%。  相似文献   

11.
在变形温度为623~773 K,应变速率为0.001~0.1 s~(-1)的条件下,通过INSPEKT Table 100 kN电子万能高温试验机对轧制态ME20M镁合金进行了热拉伸实验,分析了变形温度和应变速率对材料流动应力的影响,建立了热变形条件下的本构模型及加工图。结果表明:随着变形温度的降低和应变速率的升高,轧制态ME20M镁合金的流动应力增加;建立的本构模型预测峰值应力与实验结果吻合较好,平均相对误差为5.19%;考虑应变对本构模型中材料常数影响后的预测应力值与实验值的相关度较高,平均相对误差为6.00%;最佳热加工范围为673~773 K、应变速率0.001~0.01 s~(-1)。  相似文献   

12.
The high strain rate superplastic deformation properties and characteristics of a rolled AZ91 magnesium alloy at temperatures ranging from 623 to 698 K(0.67Tm-0.76Tm) and high strain rates ranging from 10^-3 to 1 s^-1 were investigated.The rolled AZ91 magnesium alloy possesses excellent superplasticity with the maximum elongation of 455% at 623 K and a strain rate of 10-3 s-1,and its strain rate sensitivity m is high up to 0.64.The dominant deformation mechanism responsible for the high strain rate superplasticity is still grain boundary sliding(GBS),and the dislocation creep mechanism is considered as the main accommodation mechanism.  相似文献   

13.
《Acta Materialia》1999,47(13):3705-3720
The mechanical behavior of a commercially pure titanium (CP-Ti) is systematically investigated in quasi-static (Instron, servohydraulic) and dynamic (UCSD's recovery Hopkinson) compression. Strains over 40% are achieved in these tests over a temperature range of 77–1000 K and strain rates of 10−3–8000/s. At the macroscopic level, the flow stress of CP-Ti, within the plastic deformation regime, is strongly dependent on the temperature and strain rate, and displays complex variations with strain, strain rate, and temperature. In particular, there is a three-stage deformation pattern at a temperature range from 296 to 800 K, the specific range depending on the strain rate. In an effort to understand the underlying mechanisms, a number of interrupted tests involving temperature jumps are performed, and the resulting microstructures are characterized using an optical microscope. Based on the experimental results and simple estimates, it is concluded that the three-stage pattern of deformation at temperatures from 296 to 800 K, is a result of dynamic strain aging, through the directional diffusion of dislocation-core point defects with the moving dislocation at high strain rates, although the usual dynamic strain aging by point defects segregating outside the dislocation core through volume diffusion is also observed at low strain rates and high temperatures. The microscopic analysis shows that there is substantial deformation twinning which cannot be neglected in modeling the plastic flow of CP-Ti. The density of twins increases markedly with increasing strain rate, strain, and decreasing temperature. Twin intersections occur, and become more pronounced at low temperatures or high strain rates. In sum, the true stress–true strain curves of CP-Ti show two stages of deformation pattern at low temperatures, three stages at temperatures above 296 K, and only one stage at temperatures exceeding 800 K, although all three stages may exist even at 1000 K for very high strain rates, e.g. 8000/s. While the dislocation motion is still the main deformation mechanism for plastic flow, the experimental results suggest that dynamic strain aging should be taken into account, as well as the effect of deformation twinning.  相似文献   

14.
Irreversible thermodynamics is employed as a framework to describe plastic deformation in pure metals and alloys. Expressions to describe saturation stress in single crystals and nanocrystals are employed over wide ranges of temperature, strain rate and grain size. The importance of the roles played by vacancy self-diffusion in dislocation climb and in plasticity is shown. Equations to describe the stress–strain response of single crystals and ultrafine-grained metals are derived. The activation energy for dislocation annihilation plays a central role in the mechanical response of the systems. Succinct formulations for predicting hot deformation behaviour and relaxation of industrial alloys are presented; the influence of composition in the activation energy for dislocation annihilation is shown. All formulations describing stress–strain relationships can be reduced to Kocks–Mecking classical formulation, but incorporating grain size and compositional effects. The importance of the recovery term in such formulation is established, as well as the need to obtain it employing more fundamental approaches.  相似文献   

15.
We studied the high temperature deformation behavior of a spray cast Al-25Si-2Cu-1Mg alloy within the framework of an internal variable theory for inelastic deformation. We then carried out a series of load relaxation tests at elevated temperatures to obtain flow curves between flow stress and strain rate. The results were analyzed based on constitutive relations prescribed by an internal variable theory. The hypereutectic Al-25Si-2Cu-1Mg alloy exhibited two distinctly different deformation modes, viz. plastic deformation induced by dislocation glides and creep deformation by dislocation climbs at high temperatures. These load relaxation test results were then compared with those obtained from a series of creep tests performed at elevated temperatures under various stress levels. They were found to agree well with each other, providing a means to replace the time-consuming creep test by a simple load relaxation test in order to obtain high temperature creep data.  相似文献   

16.
采用系列温度及不同应变速率条件下的压缩试验研究TiAl,TiAl-V的塑性形变行为结果表明,在不同温度区间,Peierls—Nabarro机制,交滑移机制和蠕变为塑性形变的主要控制机制,TiAl-V合金在600—700K形变时出现反常应变速率效应,而且塑性应变量越大.反常效应越明显,利用位错交滑移的热激活特性理论对此反常效应进行初步解释,温度和应变速率对加工硬化指数的影响及不同塑性应变量对应变速率敏感性的影响在本文中也进行了探讨。  相似文献   

17.
1 INTRODUCTIONMgalloysarethelightestconstructionmaterialsformanyengineeringcomponentsduetotheirlowdensity ,higherductilityandsuitablestrength[13] .However ,Mgalloyshavepoorformabilityandlimit edductilityatroomtemperaturebecauseofitsHCPstructure[4 ] .Therefore ,itisrequiredforMgalloystobedeformedatwarmtemperature(>4 98K ) [5] ,es peciallyatelevatedtemperature ,whenprismaticslipisactivatedsothattheformalityofMgalloyscanbeimprovedintermsofhighductilityandmakesiteasytosimplifythedesignandm…  相似文献   

18.
In this study, stress relaxation compression tests were performed to investigate the strain rate sensitivity, activation volume and mobile dislocations in carbon nanotubes/aluminum (CNTs/Al) composites. The results reveal that, with the addition of CNTs, the strain rate sensitivity of CNTs/Al increased. Meanwhile, a smaller V* of CNTs/Al compared with pure Al was attributed mainly to the CNT-Al interfaces and partly to the increased forest dislocations cutting activities in grain interior, which was related to the tendency of short ranges order formation during plastic deformation. The incorporation of CNTs also improved the dislocation storage capability and reduced the dislocation velocity, leading to a lower mobile dislocation exhaustion rate.  相似文献   

19.
Plastic deformation of TiAI and TiAI-V intermetallic compounds has been studied by com-pression experiment at various temperatures and strain rates.Results show that the plasticdeformation in distinct temperature range is principally controlled by the mechanisms ofPeierls-Nabarro,cross slip and creep of dislocations.For TiAI-V alloy deformed at a rangeof 600—700 K,the negative strain rate dependence of flow stress was observed,i.e.,the morethe plastic strain is.the more the negative dependence will be.A possible mechanism of theanomaly could be interpreted by thermal activation of dislocation cross slipping.The effects oftemperature and strain rate on work-hardening exponent were also studied and discussed.  相似文献   

20.
1 INTRODUCTIONTi 6Al 4VisoneofthemostimportantTial loys[1,2 ] .Butthisalloyhasbadformabilityforitshighelasticresilience .Therefore ,hotsizingisimpor tant[36 ] .Asthebaseofhotsizing ,thestudyofstressrelaxationhasimportanttheoreticalvalueandpracticalsignificance .Ontheotherhand ,Ti 6Al 4Visusedasfastenermaterialssometimes .Whenthefastenersworkatthetemperaturehigherthanroomtemperature ,stressrelaxationmayresultsinacci dents .Sohowtopreventthestressrelaxationisveryimportant[7] .Uptonow ,…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号