首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Implicit surface techniques provide useful tools for modeling and rendering smooth surfaces. Deriving implicit formulations for fractal representations extends the scope of implicit surface techniques to rough surfaces. Linear fractals modeled by recurrent iterated function systems may be defined implicitly using either geometric distance or escape time. Random fractals modeled using Perlin's noise function are already defined implicitly when described as "hypertexture."
Deriving new implicit formulae is only the first step. Unlike their smooth counterparts, rough implicit surfaces require special rendering techniques that do not rely on continuous differentiation of the defining function. Preliminary experiments applying blending operations to rough surfaces have succeeded in an initial attempt to overcome current challenges in natural modeling. The grafting of a stem onto the base of a linear fractal leaf continuously blends smooth detail into rough detail. The blend of two textured cylinders interpolates geometric bark across branching points in a tree.  相似文献   

2.
This paper presents a novel approach for appearance and geometry completion over point-sampled geometry. Based on the result of surface clustering and a given texture sample, we define a global texture energy function on the point set surface for direct texture synthesis. The color texture completion is performed by minimizing a constrained global energy using the existing surface texture on the surface as the input texture sample. We convert the problem of context-based geometry completion into a task of texture completion on the surface. The geometric detail is then peeled and converted into a piece of signed gray-scale texture on the base surface of the point set surface. We fill the holes on the base surface by smoothed extrapolation and the geometric details over these patches are reconstructed by a process of gray-scale texture completion. Experiments show that our method is flexible, efficient and easy to implement. It provides a practical texture synthesis and geometry completion tool for 3D point set surfaces.  相似文献   

3.
Striving for photorealism, texture mapping, and its more advanced variations, bump and displacement mapping, have all become fundamental tools in computer graphics. Recently, the introduction of programmable graphics hardware has enabled the employment of displacement mapping in real-time applications. While displacement mapping facilitates the actual modification of the underlying geometry, it is constrained by being an injective mapping. Further, it is also limited because it usually maps the geometry of the (low-resolution) smooth base surfaces, typically by displacing their vertices. Drawing from recent work on deformation displacement mapping (DDM) [4], in this paper we offer real-time solutions to both these limitations. Our solutions make it possible to employ the DDM paradigm on programmable graphics hardware. By reversing the roles of the base surfaces and their geometric details, both the one-to-one constraint and the base surface resolution limitation are resolved. Furthermore, this role reversal also paves the way for other benefits such as a tremendous decrease in the memory consumption of geometric detail information in the DDM and the ability to animate the details over the base surface. We show that the presented scheme can be used effectively to generate highly complex renderings and animations, in real time, on modern graphics hardware. The capabilities of the proposed method are demonstrated for both rational parametric base surfaces and polygonal base surfaces.  相似文献   

4.
基于球面参数化的点模型渐变   总被引:1,自引:0,他引:1       下载免费PDF全文
为了获得光滑自然的点模型渐变效果,基于球面参数化,提出了一种鲁棒的渐变算法。该算法首先对源和目标模型进行球面参数化,使得参数化后的模型嵌入到单位球面上;然后在球面上自适应地对齐模型间的相应特征点,并将球面映射到矩形参数域上,基于该域建立模型间各采样点的对应关系;接着在渐变过程中,采用拉普拉斯算子计算出中间点模型的几何位置,以保持模型的细节;最后利用移动最小二乘曲面进行动态上采样,以消除中间模型的裂缝。实验结果表明,该算法具有良好匹配的采样点对应和光滑的渐变过程。  相似文献   

5.
Confetti: object-space point blending and splatting   总被引:3,自引:0,他引:3  
We present Confetti, a novel point-based rendering approach based on object-space point interpolation of densely sampled surfaces. We introduce the concept of a transformation-invariant covariance matrix of a set of points which can efficiently be used to determine splat sizes in a multiresolution point hierarchy. We also analyze continuous point interpolation in object-space and we define a new class of parameterized blending kernels as well as a normalization procedure to achieve smooth blending. Furthermore, we present a hardware accelerated rendering algorithm based on texture mapping and /spl alpha/-blending as well as programmable vertex and pixel-shaders.  相似文献   

6.
Photorealistic terrain visualization results from combining two data sets. The first contains information about terrain color (texture), usually from a vertical view angle, such as an aerial or satellite image. The second data set contains information about terrain topography, in the form of elevation samples. This data set is also known as a digital terrain model, or DTM. We can reconstruct the 3D terrain from the DTM using various methods. The conventional approach triangulates the terrain into a continuous surface consisting of relatively large planar facets. An alternative approach uses a regular array of atomic values called voxels to represent the terrain. After terrain surface reconstruction, we render the oblique perspective terrain image by a process called phototexturing-the mapping of the corresponding texture onto this surface. Before doing this, we must register the texture and DTM so that the overlay is accurate. This corrects geometric distortions in the data sets, which originate in measurement device or sensor inaccuracies. We obtain the final image by projecting the colored surface onto a viewing plane, incorporating hidden surface elimination  相似文献   

7.
Two-Part Texture Mappings   总被引:4,自引:0,他引:4  
Most published techniques for mapping two-dimensional texture patterns onto three-dimensional curved surfaces assume that either the texture pattern has been predistorted to compensate for the distortion of the mapping or the curved surfaces are represented parametrically. We address the problem of mapping undistorted planar textures onto arbitrarily represented surfaces. Our mapping technique is done in two parts. First the texture pattern is embedded in 3-space on an intermediate surface. Then the pattern is projected onto the target surface in a way that depends only on the geometry of the target object (not on its parameterization). Both steps have relatively low distortion, so the original texture need not be predistorted. We also discuss interactive techniques that make two-part mapping practical.  相似文献   

8.
提出了一种基于几何细节映射的点模型的形状编辑方法.几何细节是曲面的一个重要属性,定义几何细节为原始曲面及其基曲面之间的向量差,该基曲面由多层次B样条所构成.通过基曲面上的局部仿射坐标,则可以得到与之对应的多分辨率几何细节表示,曲面的低频信息和高频信息易被用户所指定的频段分离.通过调节基曲面的形状,再将这些几何细节映射上去,可以对模型进行保细节的变形;如果将几何细节映射到其他物体上,将可以得到几何细节迁移的结果.为点模型开发了多种特征保持的编辑算子,实验结果表明,所提出的方法是一种有效的点模型造型算法.  相似文献   

9.
Computing smooth and optimal one-to-one maps between surfaces of same topology is a fundamental problem in computer graphics and such a method provides us a ubiquitous tool for geometric modeling and data visualization. Its vast variety of applications includes shape registration/matching, shape blending, material/data transfer, data fusion, information reuse, etc. The mapping quality is typically measured in terms of angular distortions among different shapes. This paper proposes and develops a novel quasi-conformal surface mapping framework to globally minimize the stretching energy inevitably introduced between two different shapes. The existing state-of-the-art inter-surface mapping techniques only afford local optimization either on surface patches via boundary cutting or on the simplified base domain, lacking rigorous mathematical foundation and analysis. We design and articulate an automatic variational algorithm that can reach the global distortion minimum for surface mapping between shapes of arbitrary topology, and our algorithm is sorely founded upon the intrinsic geometry structure of surfaces. To our best knowledge, this is the first attempt towards numerically computing globally optimal maps. Consequently, our mapping framework offers a powerful computational tool for graphics and visualization tasks such as data and texture transfer, shape morphing, and shape matching.  相似文献   

10.
We address the problem of estimating the shape and appearance of a scene made of smooth Lambertian surfaces with piecewise smooth albedo. We allow the scene to have self-occlusions and multiple connected components. This class of surfaces is often used as an approximation of scenes populated by man-made objects. We assume we are given a number of images taken from different vantage points. Mathematically this problem can be posed as an extension of Mumford and Shah’s approach to static image segmentation to the segmentation of a function defined on a deforming surface. We propose an iterative procedure to minimize a global cost functional that combines geometric priors on both the shape of the scene and the boundary between smooth albedo regions. We carry out the numerical implementation in the level set framework.  相似文献   

11.
基于OpenGL的复杂曲面的纹理映射   总被引:2,自引:0,他引:2  
介绍利用OpenGL和Visual C 6.0进行复杂曲面的纹理映射。利用解二次随圆偏微分方程的方法,得到任意曲面到平面的共形映射。此方法可以自动分配纹理坐标到复杂的没有起伏的曲面,有效地克服复杂曲面的自动纹理映射的变形,避免了纹理扰动。  相似文献   

12.
In order to provide accurate tools to model original surfaces in a Computer Aided Geometric Design context, we develop a formalism based on iterated function systems. This model enables us to represent both smooth and fractal free-form curves and surfaces. But, because of the self-similarity property underlying the iterated function systems, curves and surfaces can only have homogeneous roughness. The aim of our work was to elaborate a method to build parametric shapes (curves, surfaces, …) with a non-uniform local aspect: every point is assigned a “geometric texture” that evolves continuously from a smooth to a rough aspect. The principle is to blend shapes with uniform aspects to define a shape with a variable aspect. A blending function controls the influence of each initial shape. An illustrated application is then built, joining surfaces characterized by different kinds of roughness.  相似文献   

13.
李耀辉  武志峰  宣兆成 《计算机应用》2015,35(10):2950-2954
针对很多几何造型是带有约束条件的曲面拼接问题,在线性连续同伦的基础上提出了利用非线性同伦连续计算拼接曲面以进行三维造型的方法。首先,根据得到的截面(切片)的位置及其曲线方程确定插值点并得到插值多项式;其次,将此插值多项式作为非线性连续同伦映射函数并分别代入主曲面和辅助曲面的多项式方程得到过渡曲面的方程;然后,仅将插值变元作为变元而主、辅助曲面方程的变元作为参数,利用Sylvester结式消去过渡方程中的变元得到关于主曲面的拼接方程即造型曲面。利用该方法能实现带有控制点的曲面造型以及多曲面约束的几何造型,而且它可以确定造型过程中的中间形状及中间形状的位置,从而更加具有实用性。  相似文献   

14.

Fast high-precision patient-specific vascular tissue and geometric structure reconstruction is an essential task for vascular tissue engineering and computer-aided minimally invasive vascular disease diagnosis and surgery. In this paper, we present an effective vascular geometry reconstruction technique by representing a highly complicated geometric structure of a vascular system as an implicit function. By implicit geometric modelling, we are able to reduce the complexity and level of difficulty of this geometric reconstruction task and turn it into a parallel process of reconstructing a set of simple short tubular-like vascular sections, thanks to the easy-blending nature of implicit geometries on combining implicitly modelled geometric forms. The basic idea behind our technique is to consider this extremely difficult task as a process of team exploration of an unknown environment like a cave. Based on this idea, we developed a parallel vascular modelling technique, called Skeleton Marching, for fast vascular geometric reconstruction. With the proposed technique, we first extract the vascular skeleton system from a given volumetric medical image. A set of sub-regions of a volumetric image containing a vascular segment is then identified by marching along the extracted skeleton tree. A localised segmentation method is then applied to each of these sub-image blocks to extract a point cloud from the surface of the short simple blood vessel segment contained in the image block. These small point clouds are then fitted with a set of implicit surfaces in a parallel manner. A high-precision geometric vascular tree is then reconstructed by blending together these simple tubular-shaped implicit surfaces using the shape-preserving blending operations. Experimental results show the time required for reconstructing a vascular system can be greatly reduced by the proposed parallel technique.

  相似文献   

15.
In this paper, we present a new surface content completion system that can effectively repair both shape and appearance from scanned, incomplete point set inputs. First, geometric holes can be robustly identified from noisy and defective data sets without the need for any normal or orientation information. The geometry and texture information of the holes can then be determined either automatically from the models’ context, or interactively from users’ selection. We use local parameterizations to align patches in order to extract their curvature-driven digital signature. After identifying the patch that most resembles each hole region, the geometry and texture information can be completed by warping the candidate region and gluing it onto the hole area. The displacement vector field for the exact alignment process is computed by solving a Poisson equation with boundary conditions. Our experiments show that the unified framework, founded upon the techniques of deformable models, local parameterization, and PDE modeling, can provide a robust and elegant solution for content completion of defective, complex point surfaces.  相似文献   

16.
The realistic simulation of fluids largely depends on a temporally coherent surface tracking method that can deal effectively with transitions between different types of flows. We model these transitions by constructing a very smooth fluid surface and a much rougher, splashy surface separately, and then blending them together in proportions that depend on the flow speed. This allows creative control of the behavior of the fluids as well as the visual results of the simulation. We overcome the well-known difficulty of obtaining smooth surfaces from Lagrangian particles by allowing them to carry normal vectors as well as signed distances from the level set surface and by introducing a new surface construction algorithm inspired by the moving least-squares method. We also implemented an adaptive form of the fluid-implicit-particle method that only places particles near visually interesting regions, which improves performance. Additionally, we introduce a novel subgrid solver based on the material point method to increase the amount of detail produced by the FLIP method. We present several examples that show visually convincing water flows.  相似文献   

17.
Variable-radius blending of parametric surfaces   总被引:1,自引:0,他引:1  
The radius blend is a popular surface blending because of its geometric simplicity. A radius blend can be seen as the envelope of a rolling sphere or sweeping circle that centers on a spine curve and touches the surface to be blended along the linkage curves. For a given pair of base surfaces in parametric form, a reference curve, and a radius function of the rolling sphere, we present an exact representation for the variable-radius spine curve and propose a marching procedure. We describe methods that use the derived spine curve and linkage curves to compute a parametric form of the variable-radius sphearical and circular blends.  相似文献   

18.
This article describes how to use level sets to represent and compute deformable surfaces. A deformable surface is a sequence of surface models obtained by taking an initial model and incrementally modifying its shape. Typically, we can parameterize the deformation over time, and thus we can imagine that a surface moves or flows under the influence of a vector field. The surface flow, v, can be determined as a function of spatial position (and time), or it can depend on the shape of the surface itself. The latter is called a geometric flow. Deformable surfaces have been used to solve a variety of problems in image processing, computer vision, visualization, and graphics. In graphics, for instance, deformable surface models have been used to form sequences of shapes that animate the morphing of one object into another. They have also been used to denoise or smooth surface models derived from a set of noisy 3D measurements.  相似文献   

19.
《Graphical Models》2005,67(1):43-71
PDE surfaces, which are defined as solutions of partial differential equations (PDEs), offer many modeling advantages in surface blending, free-form surface modeling, and specifying surface’s aesthetic or functional requirements. Despite the earlier advances of PDE surfaces, previous PDE-based techniques exhibit certain difficulties such as lack of interactive sculpting capabilities and restrained topological structure of modeled objects. This paper presents an integrated approach that can incorporate PDE surfaces into the powerful physics-based modeling framework, to realize the full potential of PDE methodology. We have developed a prototype system that allows interactive design of flexible topological surfaces as PDE surfaces and displacements using generalized boundary conditions as well as a variety of geometric and physical constraints, hence supporting various interactive techniques beyond the conventional boundary control. The system offers a set of sculpting toolkits that allow users to interactively modify arbitrary points, curve spans, and/or regions of interest across the entire PDE surfaces and displacements in an intuitive and physically meaningful way. To achieve real-time performance, we employ several simple, yet efficient numerical techniques, including the finite-difference discretization, the multigrid-like subdivision, and the mass-spring approximation of elastic PDE surfaces and displacements. In addition, we present the standard bivariant B-spline finite element approximations of dynamic PDEs, which can subsequently be sculpted and deformed directly in real-time subject to the intrinsic PDE constraints. Our experiments demonstrate many attractive advantages of the physics-based PDE formulation such as intuitive control, real-time feedback, and usability to both professional and common users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号