首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
糠醛本身就是一种化工原料,其应用非常广泛,是很多产业生产必须使用到原料之一。但目前来说还存在生产工艺在产率、能耗及环境污染等方面的问题,如果不及时解决这些问题,不仅会影响糠醛的生产效率提升,还影响糠醛生产工艺的完善,甚至还会影响化工等产业的生产与发展,所以要特别注意糠醛的生产。现有的糠醛生产工艺包括Quaker Oats工艺、Agrifuran工艺、Petrole-chimie工艺等,但都存在一些不足。对此,本文作者根据自己对糠醛生产的了解,详细分析了糠醛生产工艺及制备方法。  相似文献   

2.
糠醛是一种天然的呋喃基化学品前体。然而,目前糠醛的工业生产依赖于比较陈旧、低效的生产工艺,导致容量小、产率低下。本文对过去和现在的糠醛生产工艺进行论述,以期提高由木质纤维素生物质生产糠醛的产量。首先,对糠醛催化转化制得的下游产品进行了概述。然后,本文探讨了由戊聚糖制备糠醛的形成和损失过程,以期能更好的提高糠醛的产量。最后,对一些据报道能提高糠醛产量的商业或学术生产工艺进行了讨论。  相似文献   

3.
生物质转化制糠醛及其应用   总被引:4,自引:0,他引:4  
在一步法糠醛生产技术的基础上重点对两步法糠醛生产技术,糠醛生产流程及糠醛的应用进行了综述。由于两步法糠醛生产技术结合两段水解工艺,在生产糠醛的同时可获得燃料乙醇,得率可以达到70%以上,同时提高了原料的利用率。所以两步法必将成为糠醛生产的重要研究方向。  相似文献   

4.
从植物纤维原料中水解糠醛   总被引:3,自引:0,他引:3  
介绍了从植物纤维中水解糠醛的生产方法及工艺,并讨论了糠醛收率的影响因素及其用途。  相似文献   

5.
以减四线馏分油为原料,通过糠醛精制工艺及加氢精制工艺生产环保橡胶油,研究工艺条件对产品性质的影响,并对两种工艺的优缺点进行比较。结果表明:通过糠醛抽提工艺及加氢精制工艺均可得到芳碳率为12%左右的环保橡胶油,但加氢精制工艺的收率高达97%以上,比糠醛抽提工艺的收率高10个百分点以上。  相似文献   

6.
糠醛催化加氢是将糠醛转化为生物燃料、医药农药中间体等精细化学品的最常用的反应之一,如糠醇、2-甲基四氢呋喃、内酯、乙酰丙酸盐、环戊酮等皆由糠醛催化加氢制取.当前糠醛催化加氢的过程主要有液相、气相以及催化转移加氢等.综述了近年来糠醛液相催化加氢制备糠醇的不同金属基催化剂的研究进展.从不同过渡金属和贵金属作为催化活性中心制备的单金属及双金属催化剂着手,讨论了部分金属基催化剂用于糠醛液相催化加氢制糠醇反应过程的催化性能.  相似文献   

7.
本论文研究了以减四线油为原料,通过糠醛精制工艺及加氢精制工艺生产环保橡胶油,探讨了工艺条件对产品性质的影响,并对两种工艺的优缺点进行了比较。研究结果表明,通过糠醛抽提工艺及加氢精制工艺均可得到CA值12%左右的环保橡胶油,但加氢精制工艺的收率高达97%以上,比糠醛抽提工艺的收率高10%以上。  相似文献   

8.
高温稀酸催化玉米芯水解生产糠醛工艺优化   总被引:5,自引:0,他引:5  
针对我国糠醛行业现存的资源利用率低的问题,采用高温稀酸催化玉米芯水解生产糠醛,利用平流泵连续向高压釜中通水,通过单因素和正交实验优化糠醛生产工艺.研究了停留时间、硫酸浓度、温度、硫酸浓度和温度的交互作用及液固比对糠醛收率的影响.结果表明,在实验范围内各因素对糠醛收率的影响次序为:停留时间温度液固比硫酸浓度.综合考虑糠醛收率和耗水量,确定的适宜工艺条件为:停留时间100min,温度180℃,硫酸浓度0.5%,液固质量比8:1.在此优化条件下,糠醛收率达75.27%,比国内现有玉米芯生产糠醛工业过程提高了15%~20%.  相似文献   

9.
提出了糠醛生产新工艺并得出了新工艺的最佳工艺参数。新的糠醛生产工艺是用汽爆法取代酸性水解处理玉米秸秆、经水提制得含木糖的水提液、木糖脱水环化生成糠醛,在脱水环化时使用超临界CO2(SC-CO2)流体作萃取剂。最佳的工艺参数是汽爆压力1.4 MPa、维压时间为4min;木糖脱水环化生成糠醛时反应温度180℃,反应时间180min,SC-CO2流量1.0×10-4 kg/s,反应压力16MPa,糠醛得率可达63.0%。采用新工艺,糠醛质量收率为1.2%,并能大幅减少三废的数量。  相似文献   

10.
曹阳 《山西化工》1999,19(2):62-63
介绍了糠醛生产的工艺及设备情况,对工艺操作条件、节能综合利用进行了探讨,对糖醛生产的发展前景和我省糠醛生产发展方向进行了分析和论述。  相似文献   

11.
张璐鑫  于宏兵 《化工进展》2013,32(2):425-432
糠醛是一种应用广泛的化工原料,其现有生产工艺在产率、能耗及环境污染等方面存在较大问题。本文介绍了现有的主流生产工艺如Quaker Oats工艺,Agrifuran工艺,Petrole-chimie工艺,Escher Wyss工艺及Rosenlew工艺存在的不足,分析了半纤维素生成糠醛的机理及水解动力学研究、糠醛生产设备的更新改造。从溶剂体系、催化剂体系、分离方法、加热方式等多方面探讨发展新的糠醛生产工艺。提出今后的研究重点要放在开发绿色的溶剂及催化剂上,以期对生态环境的危害降至最低。  相似文献   

12.
Furfural, which is one of the most promising platform chemicals derived from biomass, has the potential for the production of biofuels and biochemicals. However, the current industrial furfural production process relies on relatively old and inefficient technology, which has some problems such as low production yields, environmental pollutions, and lack of biomass comprehensive utilization. The main contribution of this paper is the use of a modified Scheibel column to improve the furfural recovery. Integration of pentose dehydration to furfural and the solvent phase extraction of furfural occurred simultaneously in this column. Compared with the prevailing batch biphasic reactor, the use of this modified column intensified the extraction efficiency as well as the furfural recovery. Process parameters including organic feed flow rate, reaction temperature, and stirring speed were evaluated and turned out to be significant. In order to achieve the optimal operating conditions, the CCD design was used to optimize the process parameters, and the maximum furfural yield of 80.5% was obtained.  相似文献   

13.
Furfural is a natural precursor to furan‐based chemicals and has the potential to become a major renewable platform chemical for the production of biochemicals and biofuels. However, current industrial furfural production relies on relatively old and inefficient strategies that have hindered its capacity, and low production yields have strongly diminished its competitiveness with petroleum‐based alternatives in the global market. This mini‐review provides a critical analysis of past and current progress to enhance furfural production from lignocellulosic biomass. First, important chemical and fuel products derived from the catalytic conversion of furfural are outlined. We then discuss the importance of developing integrated production strategies to co‐produce furfural with other valuable chemicals. Furfural formation and loss chemistries are explored to understand effective methods to improve furfural yields from pentosans. Finally, selected relevant commercial and academic technologies that promise to improve lignocellulosic furfural production are discussed. © 2013 Society of Chemical Industry  相似文献   

14.
Agricultural wastes such as rice husks and sawdust can be used for the manufacture of chemicals including furfural and acetic acid. In the present work the conventional use of superheated steam has been replaced by the use of superheated water in the acidic hydrolysis of rice husk and sawdust. Comparable yields of furfural have been obtained by using superheated water in place of superheated steam in the same temperature and pressure range. This is an attempt to economise the heat requirement and reduce the cost of production of furfural.  相似文献   

15.
糠醛是由可再生的生物质为原料转化得到的高价值化工产品,具有广阔的应用前景。本文综述了近年来生物质催化水解制备糠醛的研究进展,同时总结了糠醛衍生产品的制备和应用。在对半纤维素水解产糖反应和木糖脱水反应进行机理分析的基础上,从反应原料、溶剂体系、催化剂和分离方法等方面归纳总结了生物质催化水解制备糠醛的最新研究进展,并提出当前生物质制备糠醛方法中存在的问题和应对方案。在此基础上,分析了糠醛经氢化、胺化、氧化、缩醛化、聚合等反应获得高价值衍生产品的研究进展。提出要实现糠醛绿色高效的生产和应用,应着力设计低成本、低能耗、低污染且高效率的催化反应体系,同时推进重要糠醛衍生产品的综合高效利用。  相似文献   

16.
17.
The ionic liquids have emerged as new solvents and catalysts for processing biomass to value added chemicals and fuels. This review will present the recent developments in applications of ionic liquids in lignocellulosic biomass pretreatments, depolymerization, biodiesel synthesis, dehydration of carbohydrates to renewable feedstock chemicals as well as further transformations of biomass derived feedstocks such as furfural, 5‐hydroxymethylfurfural and levulinic acid to value added chemicals. In addition, the recycling of ionic liquids used in biomass processing is also discussed in the review.  相似文献   

18.
生物基糠醛制备戊二醇的工艺相比于传统的石油基路线,具有原料来源广泛、生产过程绿色无污染等优点。本文总结了国内外以生物基糠醛为原料制备戊二醇的研究现状,并对应用于糠醛催化加氢制备戊二醇的铑、铱、铂、铜基催化剂分别进行了归纳整理,同时详细论述了两种糠醛氢解路线,即糠醛加氢分别以糠醇和四氢糠醇为中间体而氢解生成戊二醇的过程。在此基础上,提出了解决目前糠醛氢解制备戊二醇过程中存在的反应物浓度低、活性差、反应压力高等问题的建议。对未来从经济、环保等多角度出发设计并完善生物基戊二醇的生产工艺以及拓展高效利用生物基糠醛制备下游精细化工产品的方法做出了展望。为开发在温和条件下高效、稳定的催化生物基糠醛氢解的催化剂体系提供了参考。  相似文献   

19.
A recent strong trend toward green and sustainable chemistry has promoted the intensive use of renewable carbon sources for the production of polymers, biofuels, chemicals, monomers and other valuable products. The Diels-Alder reaction is of great importance in the chemistry of renewable resources and provides an atom-economic pathway for fine chemical synthesis and for the production of materials. The biobased furans furfural and 5-(hydroxymethyl)furfural, which can be easily obtained from the carbohydrate part of plant biomass, were recognized as “platform chemicals” that will help to replace the existing oil-based refining to biorefining. Diels-Alder cycloaddition of furanic dienes with various dienophiles represents the ideal example of a “green” process characterized by a 100% atom economy and a reasonable E-factor. In this review, we first summarize the literature data on the regio- and diastereoselectivity of intermolecular Diels-Alder reactions of furfural derivatives with alkenes with the aim of establishing the current progress in the efficient production of practically important low-molecular-weight products. The information provided here will be useful and relevant to scientists in many fields, including medical and pharmaceutical research, polymer development and materials science.  相似文献   

20.
液态烷烃C5+是汽油、柴油、航空燃油等当前社会的运输燃料的主要成分。本文综述了利用木质纤维素衍生平台化学品制备液体燃料的研究进展,着重总结了生物质衍生平台化学品通过碳链增长得到长链含氧化合物,然后经过加氢脱氧(HDO)得到C7+液体烷烃的技术研究进展。木质纤维素衍生平台化学品包括山梨醇、糠醛、5-羟甲基糠醛(HMF)、环戊酮、甲基呋喃、酚类、丙酮、丁醇、乙醇、乙酰丙酸、γ-戊内酯等。其中,糠醛、5-羟甲基糠醛和环戊酮在碱性催化剂作用下能与其他羰基化合物发生羟醛缩合反应实现碳链增长;甲基呋喃、苯类及苯酚类衍生物可以在强酸催化作用下通过烷基化/羟烷基化反应实现碳链增长;丙酮能与乙醇、丁醇发生α-烷基化反应实现碳链增长;乙酰丙酸可以转化为戊酸、丁烯或当归内酯,再分别通过酮基化反应、烯烃齐聚反应和加成反应实现碳链增长。诸多利用生物质衍生物化学品制备长链烷烃的路径中,利用5-羟甲基糠醛和甲基呋喃制备长链烷烃的技术路线存在路径过长、原料不易获取的问题;利用环戊酮和苯酚类物质能够得到高密度长链环烷烃,是一条有竞争力的路线;糠醛和乙酰丙酸易于从生物质中大规模制取,且利用糠醛和乙酰丙酸制备长链烷烃的反应路径短,较易实现工业应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号