首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Trajectory tracking control of farm vehicles in presence of sliding   总被引:1,自引:0,他引:1  
In automatic guidance of agriculture vehicles, lateral control is not the only requirement. Much research work has been focused on trajectory tracking control which can provide high longitudinal-lateral control accuracy. Satisfactory results have been reported as soon as vehicles move without sliding. But unfortunately pure rolling constraints are not always satisfied especially in agriculture applications where working conditions are rough and not predictable. In this paper the problem of trajectory tracking control of autonomous farm vehicles in the presence of sliding is addressed. To take sliding effects into account, three variables which characterize sliding effects are introduced into the kinematic model based on geometric and velocity constraints. With a linearized approximation, a refined kinematic model is obtained in which sliding effects appear as additive unknown parameters to the ideal kinematic model. By an integrating parameter adaptation technique with a backstepping method, a stepwise procedure is proposed to design a robust adaptive controller in which time-invariant sliding is compensated for by parameter adaptation and time-varying sliding is corrected by a Variable Structure Controller (VSC). It is theoretically proven that for farm vehicles subjected to sliding, the longitudinal-lateral deviations can be stabilized near zero and the orientation errors converge into a neighborhood near the origin. To be more realistic for agriculture applications, an adaptive controller with projection mapping is also proposed. Both simulation and experimental results show that the proposed (robust) adaptive controllers can guarantee high trajectory tracking accuracy regardless of sliding.  相似文献   

2.
为针对双起升桥式吊车双吊具同步运行过程中普遍存在的无法精确建模、系统参数变化、外部扰动未知等问题,采用交叉耦合策略,提出了一种基于非线性扰动观测器的时变滑模同步控制方法。首先,采用时变滑模控制保证了控制器的全局鲁棒性;其次,利用非线性扰动观测器观测聚合扰动,对控制器进行扰动补偿;此外,提出一种可动态适应控制系统变化的变增益趋近律,有效抑制了控制输入抖振、缩短了趋近时间。最后,利用Lyapunov理论证明控制器的渐进稳定性,并通过仿真结果表明了所提出方法的有效性,控制器在未知扰动存在的情况下仍具有良好性能。  相似文献   

3.
In this paper, both the closed-form dynamics and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances are developed. The dynamic model of the system is described with assumed modes approach and Lagrangian method. The flexible manipulators are represented as Euler–Bernoulli beams. Based on singular perturbation technique, the displacements/joint angles and flexible modes are modelled as slow and fast variables, respectively. A sliding mode control is designed for trajectories tracking of the slow subsystem under unknown but bounded disturbances, and an adaptive sliding mode control is derived for slow subsystem under unknown slowly time-varying disturbances. An optimal linear quadratic regulator method is proposed for the fast subsystem to damp out the vibrations of the flexible manipulators. Theoretical analysis validates the stability of the proposed composite controller. Numerical simulation results demonstrate the performance of the closed-loop flexible space robot system.  相似文献   

4.
Quadrotor helicopter is an unstable system subject to matched and mismatched disturbances. To stabilize the quadrotor dynamics in the presence of these disturbances, the application of a composite hierarchical anti-disturbance controller, combining a sliding mode controller and a disturbance observer, is presented in this paper. The disturbance observer is used to attenuate the effect of constant and slow time-varying disturbances. Whereas, the sliding mode controller is used to attenuate the effect of fast time-varying disturbances. In addition, sliding mode control attenuates the effect of the disturbance observer estimation errors of the constant and slow time-varying disturbances. In this approach, the upper bounds of the disturbance observer estimation errors are required instead of the disturbances’ upper bounds. The disturbance observer estimation errors are found to be bounded when the disturbance observer dynamics are asymptotically stable and the disturbance derivatives and initial disturbances are bounded. Moreover, due to the highly nonlinear nature of the quadrotor dynamics, the upper bounds of a part of the quadrotor states and disturbance estimates are required. The nonlinear terms in the rotational dynamics are considered as disturbances, part of which is mismatched. This assumption simplifies the control system design by dividing the quadrotor’s model into a position subsystem and a heading subsystem, and designing a controller for each separately. The stability analysis of the closed loop system is carried out using Lyapunov stability arguments. The effectiveness of the developed control scheme is demonstrated in simulations by applying different sources of disturbances such as wind gusts and partial actuator failure.  相似文献   

5.
针对Buck型变换器系统中存在的时变干扰,如输出负载波动,本文提出一种基于扩张状态观测器(ESO)的趋近律控制方法。首先,对系统中存在的时变干扰进行建模,把抑制时变干扰问题转换为抑制匹配和非匹配扰动问题。其次,设计一种扩张状态观测器,用于估计匹配和非匹配扰动。然后,根据提出的新型指数幂次趋近律设计滑模控制器,结合ESO,有效抑制时变干扰对系统的影响,并通过Lyapunov稳定性定理分析观测器的收敛性和闭环控制系统的稳定性。最后,仿真结果验证了所提方法的有效性。  相似文献   

6.
Among the promising application of autonomous surface vessels (ASVs) is the utilization of multiple autonomous tugs for manipulating a floating object such as an oil platform, a broken ship, or a ship in port areas. Considering the real conditions and operations of maritime practice, this paper proposes a multi-agent control algorithm to manipulate a ship to a desired position with a desired heading and velocity under the environmental disturbances. The control architecture consists of a supervisory controller in the higher layer and tug controllers in the lower layer. The supervisory controller allocates the towing forces and angles between the tugs and the ship by minimizing the error in the position and velocity of the ship. The weight coefficients in the cost function are designed to be adaptive to guarantee that the towing system functions well under environmental disturbances, and to enhance the efficiency of the towing system. The tug controller provides the forces to tow the ship and tracks the reference trajectory that is computed online based on the towing angles calculated by the supervisory controller. Simulation results show that the proposed algorithm can make the two autonomous tugs cooperatively tow a ship to a desired position with a desired heading and velocity under the (even harsh) environmental disturbances.   相似文献   

7.

In order to reduce the influence of time-varying disturbances for magnetic levitation system, we propose a reduced-order generalized proportional integral observer (RGPIO) based continuous dynamic sliding mode control scheme for magnetic levitation system in this paper. Unlike the popular extended state observer (ESO), it could deal with constant or slowing varying disturbances from theoretical point of view, the reduced-order generalized proportional integral observer (RGPIO) is designed to estimate the time-varying disturbances and system states, then the dynamic sliding mode surface is developed and deduce a continuous sliding mode controller (CSMC) for magnetic levitation system. Compared with ESO based continuous sliding mode controller, the proposed method not only ensures the position tracking accuracy, but also obtain better time-varying disturbance reject ability. Simulation and experimental results are also given to verify the effectiveness.

  相似文献   

8.
A nonlinear control algorithm for tracking dynamic trajectories using an aerial vehicle is developed in this work. The control structure is designed using a sliding mode methodology, which contains integral sliding properties. The stability analysis of the closed‐loop system is proved using the Lyapunov formalism, ensuring convergence in a desired finite time and robustness toward unknown and external perturbations from the first time instant, even for high frequency disturbances. In addition, a dynamic trajectory is constructed with the translational dynamics of an aerial robot for autonomous take‐off, surveillance missions, and landing. This trajectory respects the constraints imposed by the vehicle characteristics, allowing free initial trajectory conditions. Simulation results demonstrate the good performance of the controller in closed‐loop system when a quadrotor follows the designed trajectory. In addition, flight tests are developed to validate the trajectory and the controller behavior in real time.  相似文献   

9.
非完整移动机器人道路跟踪控制器设计及应用   总被引:5,自引:0,他引:5       下载免费PDF全文
讨论一类非完整约束条件下的移动机器人道路跟踪控制问题,综合后推方法与模糊滑模控制方法设计非完整移动机器人的状态反馈控制系统,并根据Lyapunov稳定性定理后推设计时变光滑反馈控制律,当存在较大侧向误差时,模糊滑模控制器确保移动机器人沿稳定的工作区域减小误差;当误差比较小时,时变光滑状态反馈控制实现对移动机器人的平稳镇定,采用移动机器人Amigobot作为实验平台,验证了控制器设计的有效性。  相似文献   

10.
充分利用分布式驱动汽车信息源多的特点,根据扩展卡尔曼滤波算法(EKF)建立观测器对车轮侧向力进行在线估计。通过改进的车辆线性二自由度模型制定系统控制目标,依据车轮侧向力观测值设计了基于滑模变结构控制的直接横摆力矩控制器。全轮驱动力综合优化分配策略同时考虑了轮胎负荷率与驱动电机效率,完成了对车轮稳定性与能量效率的耦合控制。通过Carsim-Matlab/Simulink的仿真表明,整个系统实现了对车轮侧向力的准确估计,提高了目标直接横摆力矩计算的准确性。驱动力综合优化分配在提高车辆路面附着余量的同时也提高了各驱动电机的综合效率,进一步提高了车辆的能量利用效率。  相似文献   

11.
In this paper, the output tracking control problem for a class of switched nonlinear systems with multiple time-varying delays is studied based on equivalent-input-disturbance (EID) approach. More precisely, with the use of suitable Lyapunov-Krasovskii functional together with average dwell-time technique, an output feedback tracking controller is designed which makes that the states of resulting system can asymptotically track the desired trajectory. Further, the EID estimator is implemented to reject both matched and unmatched disturbances effectively without requiring any prior knowledge of the disturbances. Simulation results are presented to illustrate the effectiveness and potential of the developed EID-based output tracking control design technique. The results reveal the fact that the tracking controller based on EID provides a better tracking performance than the feedback controller based on sliding mode technique.  相似文献   

12.
张守武  李擎  王恒  吕萌 《控制与决策》2022,37(1):160-166
针对无人车在非匹配不确定性影响下的路径跟踪控制问题,设计一种基于线性矩阵不等式(LMI)的滑模控制器.首先,根据车辆运动学和动力学方程,同时考虑轮胎侧滑造成的不确定性、车辆侧偏约束以及随机干扰影响,建立车辆非线性不确定系统模型;然后,提出一种线性滑模路径跟踪控制方法,给出线性滑模面存在的充分条件,并推导出线性滑模面存在的显式公式,以保证约束于该滑模面的降阶等价系统的二次稳定性;最后,在SerretFrenet坐标系下验证车辆单、双移线运动时的路径跟踪控制效果.仿真结果表明,所设计的滑模控制器可以保证对参考路径的稳定跟踪,具有较强的鲁棒性.  相似文献   

13.
针对固定翼UCAV(Unmanned Combat Aerial Vehicle)系统中存在的不确定性和外部扰动,设计了一种基于扩张状态观测器的自适应超扭曲滑模控制器用来抑制系统扰动,从而提高对于UCAV的控制性能。建立固定翼UCAV的六自由度非线性模型,针对姿态控制和速度控制分别设计扩张状态观测器对模型中难以精确测量的状态量和外部扰动进行估计,依据奇异摄动原理分别对姿态和速度设计自适应超扭曲滑模控制器,实现对UCAV的姿态和速度的跟踪控制。采用某型固定翼UCAV非线性模型对所设计的控制器进行仿真验证,并且与传统的自抗扰滑模控制方法进行了对比,仿真结果表明,基于扩张状态观测器的自适应超扭曲滑模控制器具有更小的超调量和稳态误差。  相似文献   

14.
基于神经网络的水下机器人三维航迹跟踪控制   总被引:3,自引:0,他引:3  
本文研究了水下机器人三维航迹跟踪控制问题.在充分考虑了模型中不确定水动力系数和外界海流干扰的基础上,提出了基于神经网络的自适应输出反馈控制方法.控制器由3部分组成:基于动态补偿器的输出反馈控制项、神经网络自适应控制项和鲁棒控制项.神经网络所需的自适应学习信号由线性观测器提供.基于Lyapunov稳定性理论证明了控制系统的稳定性.最后针对某AUV进行了空间三维航迹跟踪控制仿真实验,结果表明设计的控制器可以较好地克服时变非线性水动力阻尼对系统的影响,并对外界海流干扰有较好的抑制作用,可以实现三维航迹的精确跟踪.  相似文献   

15.
本文主要研究了四旋翼无人机在外部干扰、执行器存在部分失效和偏置故障并发情况下有限时间轨迹跟踪的控制问题. 通过分析四旋翼无人机动力学特性, 构建了带有外部干扰、执行器机构故障的动力学模型. 基于鲁棒全局快速终端滑模控制算法, 设计了一种有限时间容错控制器, 提高了系统对故障的响应速度. 其次, 针对常值/时变故障和干扰,在控制器设计中采用改进的连续函数进行补偿, 减少了由切换函数引起的系统抖振, 并基于Lyapunov函数对控制器的稳定性进行了分析. 最后, 通过仿真实验验证了所设计控制器的有效性和可靠性, 同时存在执行器故障和外部干扰的情况下, 无人机能够实现较好的轨迹跟踪性能.  相似文献   

16.
基于非线性迭代滑模的欠驱动UUV三维航迹跟踪控制   总被引:2,自引:0,他引:2  
为实现欠驱动无人水下航行器(Unmanned underwater vehicle, UUV)在未知海流干扰作用下的三维航迹跟踪控制, 提出一种基于工程解耦思想设计的非线性迭代滑模航迹跟踪控制器. 基于虚拟向导的方法,建立UUV空间航迹跟踪误差方程;采用迭代方法设计非线性滑模控制器, 无需对UUV模型参数不确定部分和海流干扰进行估计,避免了舵的抖振现象以及减小了稳态误差与超调问题. 仿真实验表明,设计的控制器对欠驱动UUV系统的模型参数摄动及海流干扰变化不敏感、 且设计参数易于调节,可以实现三维航迹的精确跟踪.  相似文献   

17.
This paper addresses the trajectory tracking control of a nonholonomic wheeled mobile manipulator with parameter uncertainties and disturbances. The proposed algorithm adopts a robust adaptive control strategy where parametric uncertainties are compensated by adaptive update techniques and the disturbances are suppressed. A kinematic controller is first designed to make the robot follow a desired end-effector and platform trajectories in task space coordinates simultaneously. Then, an adaptive control scheme is proposed, which ensures that the trajectories are accurately tracked even in the presence of external disturbances and uncertainties. The system stability and the convergence of tracking errors to zero are rigorously proven using Lyapunov theory. Simulations results are given to illustrate the effectiveness of the proposed robust adaptive control law in comparison with a sliding mode controller.  相似文献   

18.
针对一类复杂非线性系统,提出一种新型自适应快速非奇异终端滑模控制(IAFNTSMC)方法,用以解决其在输出时变约束及量化输入情形下的轨迹跟踪问题;利用鲁棒自适应方法处理扰动不确定性,并结合反演策略和终端滑模策略设计控制器;构造一种新型的时变约束障碍Lyapunov函数,用于实现对系统的输出误差进行随时间变化的幅值约束;为提高闭环系统的误差收敛速度,提出一种新型的滑模面构造方案.所提控制方法能够保证闭环系统的输出跟踪误差快速收敛到约束边界内,并确保闭环系统所有信号有界.数值仿真验证了所提方法的有效性.  相似文献   

19.
In this article, a sliding mode coordinated decentralised state-feedback model reference adaptive control is developed for a class of large-scale uncertain multi-agent systems with time-varying delays in the nonlinear interconnections. The design procedure is based on a combination of the model coordination concept and a sliding mode control methodology. Novel decentralised controller parameterisations that are robust to unknown information exchange delays and to external disturbances with unknown bounds are proposed. Two different controllers are designed: one with discontinuous and one with continuous control action, respectively.  相似文献   

20.
Aiming to solve the tracking control problem of a class of second-order underactuated mechanical systems with unknown model parts, external disturbances and noise disturbances, a double closed-loop layered integral terminal sliding mode control method based on sliding mode observer is proposed. At the outset, the Lagrange model of the system is transformed into an affine model, and a sliding mode observer is designed according to the system structure. Neatly, the outer loop controller is designed using the observer’s estimated state, and the output value of the outer loop controller is filtered with a low pass filter. Then the inner loop controller is designed by using hierarchical sliding mode control method. On a premise of ensuring tracking performance, the control method can maximally improve convergence speed and reduce chattering even if there are unknown model parts, external interference and noise interference phenomena in the system. This simulation results distinctly display the effectiveness of the control tactics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号