首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
面板堆石坝的主次堆石料分区使面板堆石坝坝体应力路径变得复杂,对坝体变形影响很大,因此主次堆石料的合理布置对坝体位移及稳定性有着重要影响。以国内某面板堆石坝工程竣工期和蓄水期的变形特性研究为例,运用E-B模型与ADINA软件自带的Law3模型进行数值仿真计算,考虑主次堆石料模量比从0.75∶1逐渐变化到1.5∶1四个方案,对比分析了不同主次堆石料模量比下坝体水平位移和竖向位移的分布特征,并通过考虑堆石料的流变特性,分析流变对坝体堆石料水平位移和竖向位移的影响。研究基于不同主次堆石料模量比的面板堆石坝流变特性,提出当主次堆石料模量比为1.5∶1时坝体与面板有较好的变形协调性。  相似文献   

2.
高面板堆石坝在运行过程中面板容易出现挤压破损,坝体变形过大和变形长期不稳定是主要原因。影响堆石体和面板应力变形的因素较多,主要包括坝体堆石料分区和参数、面板分期及浇筑时机、坝体流变、垫层料表面的处理。基于实测变形反演堆石料本构参数和流变参数,运用反演得到的参数对面板堆石坝坝体和面板应力变形影响的因素进行敏感性分析,得出:提高下游次堆石的填筑标准,能有效减小高面板坝面板上部的顺坡向拉应力;面板分期能减小面板蓄水后的挠度,且最大挠度点往高高程偏移;坝体填筑完成后面板浇筑前预留的时间越长,大坝蓄水引起的变形越小。设置挤压边墙能有效减小面板中部的坝轴向应力和顺坡向应力,同时也能减小面板的挠度;面板最大挠度、坝轴向应力和顺坡向应力在坝体流变作用下逐步增大,并逐步趋于稳定。  相似文献   

3.
通过分析软岩不同利用方案及分区形式对高面板堆石坝力学性状的影响,获取了坝体应力和变形的变化规律。高面板堆石坝下游次堆石区中软岩含量及堆石区几何特征、主堆石体分区形式均影响面板堆石坝的力学性状。提高坝体下游堆石区的强度及刚度,可以提高各堆石区之间的协调变形能力、降低面板变形及应力。提高位于坝轴线处的堆石体承载力,可以有效降低坝体变形及面板应力。为控制高面板堆石坝的坝体变形及应力,坝轴线处坝体下部堆石区宜填筑承载力高的堆石体,下游堆石区中软岩比例不宜超过30%。  相似文献   

4.
针对重庆市金佛山混凝土面板堆石坝初步设计方案,通过静力平面应力变形分析计算,分析了坝体在竣工期、蓄水期的应力变形分布规律,重点研究了主堆石孔隙率、次堆石材料对面板和趾板的应力变形、周边缝变位等的影响,为选取主堆石孔隙率、次堆石区筑坝材料提供依据。计算结果表明,主堆石孔隙率采用20.1%和19.1%均可行,次堆石筑坝材料采用弱风化带粉砂岩∶页岩=7∶3和弱风化带粉砂岩∶页岩=5∶5均是可行的。但是相对于其他方案,采用主堆石孔隙率为20.1%,次堆石筑坝材料为弱风化带粉砂岩∶页岩=7∶3的方案,坝体、面板、趾板的应力变形较小。  相似文献   

5.
修建在深厚覆盖层上的面板堆石坝地基和部分坝体处于饱和渗流状态,渗流和变形的耦合作用对坝基和坝体的变形具有一定的影响。通过采用Drucker-Prager塑性模型和时间硬化流变模型描述堆石料和覆盖层砂砾石材料的瞬时变形和流变变形,采用Signorini型变分不等式方法描述堆石料和覆盖层多孔介质材料的渗流过程,在此基础上基于动量守恒原理和Kozeny-Carman方程提出覆盖层上面板堆石坝渗流-流变耦合分析方法。基于渗流-流变耦合分析,研究了渗流-流变耦合作用下覆盖层面板堆石坝的力学特性,分析了渗流作用对面板堆石坝长期变形的影响规律,进而讨论了覆盖层上面板堆石坝的变形机制和演化过程。结果表明:覆盖层地基压缩变形使大坝最大变形位置向下移动至0.3倍坝高位置且面板承受较大的拉应力;大坝流变变形是面板堆石坝的重要变形来源,其引起的坝内沉降增量达27.3%,面板拉应力增量达5.1%;渗流效应对大坝流变变形具有一定的影响,但相对于流变效应引起的应力变形增量整体相对较小。  相似文献   

6.
老挝南欧江六级水电站挡水建筑物为土工膜面板堆石坝,该坝为目前世界上最高的土工膜面板堆石坝,也是软岩填筑比例最大的面板堆石坝。坝体设计以现场碾压试验和室内试验进行的板岩堆石料物理力学特性研究为基础,进行坝体分区设计和调整,提出合理的坝料碾压填筑标准,结合土工膜柔性防渗体系设计,系统的建立土工膜面板软岩堆石高坝设计流程。经应力变形和渗流计算分析,坝体分区设计合理。蓄水后,监测数据表明坝体各项指标正常,坝体变形在允许范围内,土工膜防渗效果良好。  相似文献   

7.
砂砾石面板堆石坝流变特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以乌鲁瓦提砂砾石面板堆石坝为例,分析砂砾石面板坝在考虑流变和不考虑流变情况下坝体在竣工期和蓄水期的位移和应力分布规律,总结流变效应对坝体应力和变形的影响。计算结果表明:计入流变影响后坝体竖向位移和水平位移较未计入流变效应结果都有所增大,大主应力和小主应力也有所增加;从坝体沉降历时曲线和流变附加节点荷载计算结果可以看出,砂砾石料的变形主要在施工期完成,在蓄水后一年流变变形基本结束坝体位移趋于稳定,且计入流变的计算结果与坝体实际检测结果相近。因此,在进行砂砾石面板堆石坝坝体应力变形计算时考虑砂砾石的流变效应是必要的。  相似文献   

8.
基于三维有限元非线性方法,考虑某高面板堆石坝面板分期施工浇筑的特点,建立精细模拟面板特性的子模型,用有厚度的接触面单元模拟坝体与面板的接触面,设置相应的连接单元模拟面板缝的相互作用,分析了该面板堆石坝在施工期和蓄水期坝体和面板的应力变形,并与类似坝高的面板堆石坝的计算或监测结果进行比较。结果表明:在施工期和蓄水期坝体的最大沉降值约为坝高的1%,位于次堆石区;面板应力以压应力为主,拉应力主要集中在面板与周边山体连接处;周边缝的最大错动剪切变形、最大张拉变形及最大沉降剪切变形均未超过30 mm。  相似文献   

9.
近代面板堆石坝的主要问题是坝体变形导致防渗结构的张拉错动形成渗漏.影响坝体变形的主要因素有:坝高、堆石模量及河谷形态.坝体压缩模量与堆石强度、级配、密实度、浑圆度、应力历史、施工方法等因素有关.较系统地分析了近代面板堆石坝堆石压缩模量试验值E_0、施工期与初期蓄水实测值E_(re)、E_(rf)与经验公式法、非线性弹性有限元法、应力应变数学模型法模量计算值之间的异同点.统计资料表明:E_0近似等于25~80Pa;E_(re)近似等于40~140MPa;E_(rf)等于1.9~3.5倍的E_(re).95%己建辗压式面板堆石坝竣工期垂直变率η为0.33%~0.5%;运用期η为0.05%~0.1%.  相似文献   

10.
冲碾压实技术在洪家渡面板堆石坝上的应用   总被引:4,自引:0,他引:4  
高面板堆石坝后期变形是恶化大坝防渗结构的重要因素。洪家渡面板坝在次堆石区采用冲碾压实技术,用爆破次堆石料,按次堆石料填筑层厚经碾压达到主堆石料的密实度和级配要求,这既可减少堆石体后期次压缩变形和蠕变变形,又可以加快填筑施工速度,从而提高坝体质量,获得较好的经济效益。  相似文献   

11.
采用振动碾压填筑堆石坝的过程中,堆石料会发生大量的颗粒破碎,导致粗粒含量减小,细颗粒含量增加,碾压后的级配与设计级配已经不再相同。然而,目前在可研和初设阶段,开展现场碾压试验难度大,而有限元计算大坝变形时采用的堆石料计算参数往往都是设计级配(未考虑碾压)的三轴试验结果。实际上,设计级配的变形模量比碾压后级配(相同密度条件下)的试验结果高。本文参考已建大坝碾压时颗粒破碎的实测结果,采用考虑颗粒破碎的状态相关的堆石料弹塑性本构模型,开展了大坝施工和蓄水的有限元分析研究,计算结果表明:是否考虑碾压过程中的颗粒破碎对大坝变形计算结果有着较大的影响,如果在三轴试验或计算分析中不考虑这个因素,会明显地低估大坝的变形,对大坝的安全性评价是十分不利的,这可能是目前有限元计算的高坝沉降变形比实测偏小的主要原因之一。  相似文献   

12.
三板溪面板堆石坝坝体变形控制   总被引:1,自引:0,他引:1  
对面板堆石坝而言,坝体变形控制是设计和施工的首要问题。三板溪水电站主、副坝均为面板堆石坝。主坝最大坝高185.5m,建于峡谷河段,筑坝材料为超硬岩及强风化料,岩性复杂,填筑工期短;副坝最大坝高92.1m,上下游均为贴坡坝型,坝基地形特殊,以上条件对控制坝体变形均不利。在设计中,从坝基开挖处理、坝料选配、坝体分区、填筑要求、施工程序和进度安排等方面均采取了措施,以减少这些不利影响,保证大坝安全运行。  相似文献   

13.
文章阐述了我国高混凝土面板堆石坝安全布置、趾板、混凝土面板以及坝基的处理,在分析了高混凝土面板堆石坝工作性状及其影响因素的基础上,进一步论述了高混凝土面板堆石坝的设计理念。其主要体现在要保证大坝变形安全,在坝体分区设计、筑坝材料选择、开挖料利用、坝体填筑标准和形象建设、面板填筑与坝体填筑两者在时间与空间上的关系等,设计施工理念中变形协调原则极为重要。  相似文献   

14.
堆石坝面板配筋方式的作用分析   总被引:1,自引:0,他引:1  
杨松林  周灿元  钟平 《水力发电》2005,31(8):32-34,49
以有限元数值分析为手段,以堆石坝面板在施工期和蓄水期的应力变形为研究对象,对混凝土面板的配筋方式进行了分析,对传统的面板中部单层配筋方式提出了质疑。将混凝土处理成低抗拉材料,钢筋看成理想弹塑性材料,坝体看成完全弹性材料,对3种不同工况下面板的挠度、荷载以及破坏情况进行了对比分析。分析结果表明,在面板未发生破坏之前,配筋率的大小并不改变面板的刚度,配筋只在面板产生破坏之后才发挥作用。鉴于堆石坝面板弯曲方向的不确定性,推荐在工程中采用双层配筋方式。  相似文献   

15.
堆石坝混凝土面板裂缝成因及防治   总被引:2,自引:0,他引:2  
分析了面板堆石坝在施工期及蓄水时出现裂缝的原因,探讨了面板混凝土结构性裂缝和非结构性裂缝产生的机理、规律和主要影响因素,结合公伯峡水电站大坝面板裂缝处理经验,从材料、结构和施工技术等方面提出了防治堆石坝混凝土面板裂缝的措施.  相似文献   

16.
在混凝土面板堆石坝的设计中,坝体的变形是一项至关重要的控制因素。筑坝堆石材料的压实控制标准和坝体结构分区设计是混凝土面板堆石坝变形控制的重要措施。从堆石的压实标准看,当堆石材料的填筑密度从一个相对较低的数值提高到较高的数值时,坝体和面板的变形和应力分布将得到明显的改善。从坝体断面分区布置看,次堆石区的变形将会对面板的应力和变形产生一定的影响,对于高混凝土面板堆石坝,这一影响尤其明显。在坝体的断面分区设计中,变形特性相差很大的堆石填筑分区将有可能导致混凝土面板发生拉伸裂缝。本文通过对相关研究和数值模拟的综述提出:提高堆石填筑压实标准,改进坝体断面分区,可以显著改善坝体和面板的应力变形性状,从而提高大坝的整体安全特性。  相似文献   

17.
中厚覆盖层上中低面板堆石坝应力变形分析   总被引:1,自引:0,他引:1  
在中厚覆盖层上修建中低面板堆石坝目前较为普遍,其应力变形特性与深厚覆盖层上修建的高面板坝有较大差异,因此有必要进行研究。利用目前应用较为广泛的邓肯-张E-B模型,采用二维有限元分析法针对位于宽河谷中的双溪口面板堆石坝竣工期及蓄水期的堆石体及面板的应力变形特性进行研究。结果表明:相比竣工期,蓄水期坝体沉降、向下游的水平位移、大坝大小主应力、应力水平及面板挠度均有所增加,其中以面板挠度及大坝水平位移增加最为明显,挠度增加了16.61 cm,水平位移增加约1倍,沉降增加幅度约为8%,大、小主应力增加10%~20%,应力水平增加约50%。大坝在竣工期及蓄水期的应力及变形均在允许范围内,大坝运行正常。  相似文献   

18.
文中着重介绍了鱼背山面板堆石坝在施工期和蓄水期的变形观测结果。变形监测资料分析表明 :坝体内不同部位垂直沉降和水平位移 ,主要受施工期大坝主体工程填筑和水库蓄水的影响 ,坝基孔隙水压力变化与库水位变化成正比。在大坝运行初期 ,及时地分析和判断出面板的两处裂缝 ,在水库放空检查时 ,裂缝所在的部位和开裂宽度与监测结果非常吻合。为及时制定补救措施提供了科学依据。  相似文献   

19.
高心墙堆石坝材料分区较多,且静力模型和流变模型参数均不相同。为了避免二者同时反演时巨大的计算量,并进一步提高反演参数的准确性,更好地分析堆石坝应力变形、进行变形预测,考虑堆石体瞬变和流变参数的解耦关系,对瞬变和流变参数进行解耦反演分析。以瀑布沟心墙堆石坝为例,在参数敏感性分析的基础上,利用堆石坝施工期、第一次满蓄水期、第二次满蓄水期的变形监测资料,以敏感性较强的参数为待反演参数,采用基于基因片段差异度的遗传算法和径向基函数神经网络(RBF)构建反演平台,对瞬变-流变模型参数进行了解耦反演分析。反演结果表明,计算值与实测值在数值和变化规律上总体符合较好,反演结果较为合理可靠。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号