首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
废筷子采用磷酸活化法在不同操作条件下制备得到各种活性炭。分别研究了磷酸活化法制备活性炭的主要操作参数,如浸渍比、磷酸浓度、活化温度和活化时间对活性炭收率和活性炭对碘的吸附值的影响。实验结果表明,在最佳工艺条件:磷酸浓度70%,浸渍比2.5:1,活化温度500℃,活化时间60min下,所制得活性炭的碘吸附值为885.23mg/g。另外,实验测定了废筷子采用磷酸活化法制备的活性炭对硫醇的吸附性能。结果发现活性炭的碘吸附值越高对硫醇的吸附效果越好。  相似文献   

2.
以黑龙江煤制备活性炭,用正交试验法,考察原料煤种、碱炭比、活化温度、活化时间等因素对活性炭碘吸附值的影响,筛选出适宜煤种并获得了较适宜工艺条件:经酸洗脱灰的勃利煤,活化温度900℃,炭活化时间110 min,碱炭比5/1为最佳试验条件。在此条件下所得活性炭的碘吸附值已达2012 mg/g,比表面积达到1847 m2/g,其对水溶液中苯酚的吸附动力学研究结果表明,活性炭对苯酚的吸附符合二级吸附动力学模型,二级吸附速率常数k2为7.648×10-3g/(mg·min-1)。  相似文献   

3.
以污泥为原料,氯化锌与硫酸进行复配为活化剂,制备污泥活性炭。通过对Zn Cl2与H2SO4体积比、热解温度、保温时间和固液比4个因素进行正交试验,测定污泥活性炭碘吸附值,确定最佳制备工艺,并对污泥活性炭进行红外光谱、比表面及孔径、表面形貌等表征。结果表明:污泥活性炭的最佳制备条件为:Zn Cl2与H2SO4的体积比2∶1,加热温度为550℃,保温时间为40 min,固液比为1∶2.5,该条件下制得的污泥活性炭比表面积为198.32 m2/g,平均孔径为4.759 4 nm,碘吸附值为552 mg/g。  相似文献   

4.
为探究多层流化床用于粉状炭化料活化的可行性,采用多层流化床反应器,以大同煤的炭化料为原料,通过含氧水蒸汽活化法制备活性炭,考察操作条件对活性炭的吸附性能、孔结构特性及产率的影响。结果表明,与单层床和3层床相比,双层床活化满足生产高品质活性炭的需求,且能获得较高的活性炭产率。采用在第2层床供入部分氧气的分级供氧方法可提高活性炭的产率,并维持了较高的吸附能力和比表面积。在双层流化床第1层床和第2层床活化温度分别为890 ℃和870 ℃、活化剂中氧体积分数为8.9%、加料速率5 g/min、水碳比1.73的条件下,当第2层床供氧量占总氧量的体积分数为50%时,活性炭的收率达到46%,比表面积为877.1 m2/g,亚甲基蓝吸附值为226 mg/g,碘吸附值为1 025 mg/g,强度为92%,装填密度为334 kg/m3。因此,在双层流化床中采用分级供氧能确保同时实现煤基活性炭制备的高收率和高品质。  相似文献   

5.
以神府煤和污水污泥为原料采用微波炭化法制备吸附剂,分别考察了污泥和煤质量比、微波功率、微波炭化时间、碱炭比、活化温度和活化时间对活性炭吸附性能的影响。借助孔结构分析和模拟废水处理试验,对产品的性能进行了表征。结果表明:微波功率为800W,炭化时间为12 min,碱炭比为3∶1,活化温度为550℃,活化时间为2 h时制取的活性炭的吸附性能较好,碘吸附值为786.36 mg/g,BET比表面积251.78 m2/g,对模拟染料废水脱色率为67%。  相似文献   

6.
为了实现固废资源化利用,以废弃荞麦壳为原料采用化学活化法制备了一种新型吸附 剂———荞麦壳基活性炭。 采用单因素方法对制备过程中的活化温度、活化时间、活化剂种类和荞 麦壳与活化剂的质量比进行了优化,通过碘值和亚甲蓝值考察了优化后荞麦壳基活性炭的吸附 效能,并采用气体吸附仪、X射线衍射法和扫描电镜分析表征了活性炭的孔结构、微晶结构及微 观表面形貌。 结果表明:当采用磷酸活化剂、活化时间90min、活化温度500℃、荞麦壳与活化剂 的质量比为1∶3时,获得的荞麦壳基活性炭碘值和亚甲蓝值分别为765.8mg/g和222.2mg/g, 其亚甲蓝值高于市售的三种活性炭(煤基、木质、椰壳活性炭);同时,优化后的荞麦壳基活性炭 的中孔孔隙率最大为96.8% ,总孔容量(0.666cm3/g)高于煤基活性炭和椰壳活性炭,比表面积 (785.3m2/g)与市售活性炭相当,说明以荞麦壳为原料采用磷酸活化可制备出中孔发达、吸附性 能好的活性炭。  相似文献   

7.
以凹凸棒石和稻壳为原料,氯化锌为活化剂制备了凹凸棒石/稻壳活性炭(ATP/RHAC)复合材料,研究了凹凸棒石与稻壳质量比、浸渍比、活化温度、活化时间等制备条件对复合材料吸附性能的影响.结果表明:当凹凸棒石与稻壳质量比为1:1、浸渍比为2:1、活化温度为500℃、活化时间为1h时制备的复合材料吸附性能较好,对阳离子黄X-...  相似文献   

8.
用磷酸活化褐煤制备活性炭   总被引:3,自引:0,他引:3  
用磷酸浸渍一步炭活化法对云南先锋褐煤制活性炭进行了研究,结果表明,磷酸加热浸渍对褐煤有较强的活化能力,在浸渍磷酸水溶液中添加硫酸能使产品活性炭的碘吸附值增加45%,但也会使碳损失增加5%~8%。用浓度为40%~60%的磷酸和9%褐煤质量的硫酸添加剂溶液,在80℃浸渍14h,400~430℃炭活化2min即可使褐煤完全活化,得到的活性炭碘吸附值大于800mg/g,产率高于45%。  相似文献   

9.
采用水蒸气活化法制备了兰炭粉基活性炭。探讨了兰炭粉基活性炭对高COD焦化废水的吸附研究。考察了活性炭粒度、分散方式、投加量、吸附时间对焦化废水中COD去除率的影响。结果表明:曝气分散方式优于搅拌;在曝气条件下,活性炭粒度100目,投加量10g/L,吸附时间1h,COD去除率达到89.79%。  相似文献   

10.
煤系高岭土在焙烧温度620℃、活化时间2h的条件下制备偏高岭土,其内部的吸附水和大部分结构羟基脱出基本完成,质量损失达14.2%,热处理使铝氧八面体破坏,结晶度降低,结构无序化。在反应温度80℃、反应时间7h、酸用量25mL/g和酸浓度2mol/L条件下制得酸改性高岭土材料,比表面积达313.58m2/g。对H2S的吸附结果表明,吸附容量达50.2mg/g,比天然沸石大28.5mg/g。再经5.3%的K2MnO4浸渍改性的高岭土的吸附容量达82.3mg/g。  相似文献   

11.
为解决变压吸附法提纯煤层气中甲烷遇到的吸附剂难题,以我国海南产椰壳炭化料为原料,采用二次炭化-水蒸气物理活化工艺制备生物质基活性炭,采用高压电子天平测量了298 K、0~1. 0 MPa下CH_4/N_2在制备得椰壳活性炭上的吸附等温线,利用比表面积和孔径吸附仪测量了活性炭的孔径结构,详细研究了活化工艺参数对CH_4/N_2吸附分离性能及孔隙结构的影响。通过变压吸附装置检验了最佳工艺参数条件下制备椰壳活性炭的CH_4提浓效果。研究结果表明,随着活化温度的提高,平衡分离系数逐步减小,吸附容量逐步增加,最佳活化温度为850℃;平衡分离系数和饱和吸附容量均随水蒸气流量的增加呈先增加后减小的趋势,最佳水蒸气流量为2.0 kg/h;平衡分离系数随活化时间延长先增加后减小,甲烷饱和吸附容量逐渐递增,最佳活化时间为40 min。升高活化温度对孔结构的发育影响显著,比表面积、微孔孔容和总孔容均呈递增趋势,表明升高温度有利于微孔的发育,可制备出微孔发达的活性炭。变压吸附评价结果表明在水蒸汽活化工艺最优条件下制备得椰壳活性炭可将20%CH_4-80%N_2模拟煤层气中的CH_4体积分数提高到48. 3%,提浓幅度大于25%,回收率为80.58%,产能达到108.82 m~3/(t·h);同时,该吸附剂对中高浓度煤层气也具有较好的分离效果,体现出较好的分离性能。  相似文献   

12.
《煤炭技术》2017,(11):333-335
以水蒸气为活化介质开展了兰炭制备活性焦的研究。以废水COD吸附值作为评价指标,考察了活化温度、蒸汽流量、反应时间等条件对活性焦吸附性能的影响,分析了3种兰炭活性焦的孔隙结构。结果表明,不同性质兰炭的最佳活化条件有所差异,活性焦的孔容积越大,中孔越多,对废水的吸附效果越好。  相似文献   

13.
以高温热解煤化工生产线产生的焦粉为原料,采用物理化学活化法、炭化活化一体化工艺技术,在氮气气氛的回转炉中进行高温炭化活化,制备出强度为94%,比表面积为1016 m2/g的煤质柱状活性炭。利用全自动比表面积及孔隙度分析仪分析了活性炭的氮气吸脱附曲线及孔结构特性。经检测,该活性炭孔容为0.51m L/g,碘吸附值为907 mg/g。同时比较了其炭化料和活化料在微观表面形貌中的特点,结果显示活化料中的孔洞类型和结构明显比炭化料中的丰富。在XRD测试分析中,活性炭中的晶态碳原子相比原料和炭化料逐渐呈现出非晶态转变。傅里叶变换红外光谱分析结果显示,活性炭中主要含有-OH、C-O-C和苯环等官能团,相较原料,其他官能团在活化时都转化成了CO_2、H_2O等小分子物质。  相似文献   

14.
以竹屑废弃生物质为原料,磷酸和硫酸混合液为催化剂,低温制备竹屑活性炭。采用正交实验法研究了在低温二氧化碳活化条件下制备活性炭的优化工艺条件。结果表明,以磷酸和硫酸混合液为催化剂低温制备竹屑活性炭的优化条件为:硫酸和磷酸质量分数为20%和40%,炭化温度200℃,炭化时间2h,活化温度500℃,活化时间3h。本次试验制备的竹屑活性炭的吸附碘值为597mg/g,得率为66%。  相似文献   

15.
吴凡  叶传珍  王敏辉 《煤炭工程》2020,52(12):163-167
以高惰质组准东不粘煤为原料制备活性炭,基于Box-Behnken响应曲面法,采用水蒸气活化制备了煤基活性炭,并测定了其碘吸附量,使用扫描电镜(SEM)观察了活性炭表面形貌,通过低温氮气吸附法得到了活性炭比表面积、总孔体积和孔径分布等物理结构特征。结果表明,最佳活化水平为活化温度900℃,活化时间90min,水蒸气流量6mL/min。活化时间、活化温度和水蒸气流量对碘吸附量均有影响,其中活化时间影响程度最大,活化温度次之,水蒸气流量最小,且因素之间交互作用不显著。比表面积、总孔体积和微孔数量均会影响碘吸附量,其中微孔数量起主要作用。  相似文献   

16.
以印尼褐煤为原料,KOH为活化剂,在400~580 ℃的中低温活化条件下制备出超级电容器用煤基活性炭,采用低温N2吸附、X射线衍射(XRD)及扫描电子显微镜(SEM)对其孔结构、微晶结构以及表面形貌等进行表征,并评价了其用作超级电容器电极材料的电化学性能。结果表明:在KOH活化制备煤基活性炭的活化过程中,KOH与煤中C的反应始于400~460 ℃;随着活化温度的升高,活性炭的比表面积及总孔容增大,孔径分布变宽,中孔率提高。当活化温度达到580 ℃时,所制活性炭的比表面积高达1 598 m2/g,总孔容达0.828 cm3/g,中孔率达41.4%,该活性炭用作电极材料在3 mol/L KOH电解液中具有良好的充放电性能,在50 mA/g的低电流密度下比电容高达369 F/g,在2 500 mA/g的高电流密度下比电容仍保持305 F/g,其漏电流仅为0.02 mA,且具有良好的循环性能,经1 000次循环后,比电容保持率超过92%,是一种理想的超级电容器电极材料。  相似文献   

17.
硫代硫酸盐提金法是最有望取代氰化法的无毒提金方法,但浸出液中金-硫代硫酸根络离子(Au(S2O3)3-2)无法经济有效地回收阻碍了该方法的工业应用。为了提高活性炭对Au(S2O3)23-的负载量,本文以三种粒级的活性炭为原料,采用三聚氰胺浸渍-高温热活化法制备了改性活性炭。通过静态吸附法、孔径与比表面积分析仪、SEM-EDS和XPS等方法详细研究了三聚氰胺用量、浸渍温度、热活化温度和时间等对改性活性炭吸附Au(S2O3)23-的影响和吸附机理。研究结果表明,粒级为0.45~0.90 mm的活性炭添加3.75%的三聚氰胺,50℃下浸渍改性后,在温度为750℃下热活化60 min,制备的活性炭对Au(S2O3)23-的负载量最大,为553.35...  相似文献   

18.
兰炭是煤在较低温度下热解的产物,因其尚未热解完全,内部含有较多的氢和氧,有较丰富的孔隙及表面结构,所以具有较好的吸附性能,主要对陕北兰炭进行了碘吸附、亚甲基蓝吸附和钙镁离子吸附分析。试验结果表明,陕北兰炭能有效吸附碘、亚甲基蓝和钙镁离子,对碘的吸附值为211.73mg/g,对亚甲基蓝去除率达到92.7%。  相似文献   

19.
以竹屑为原料,经磷酸和硫酸混合溶液预处理,在低温下制备竹屑活性炭。采用正交实验法探讨了在低温条件下制备活性炭的优化工艺条件。结果表明,以磷酸和硫酸混合溶液为预处理剂,低温制备竹屑活性炭的优化工艺条件为:硫酸和磷酸质量分数为20%和40%,炭化温度200℃,炭化时间2h,活化温度500℃,活化时间3 h。本次试验制备的竹屑活性炭的吸附碘值为597 mg/g,活性炭产率为56%。还通过SEM表征制备的活性炭具有孔洞结构,孔径约为0.1μm,通过热重试验探讨了磷酸和硫酸混酸处理对竹屑热解特性的影响。结果表明,经混酸处理后,竹屑热解特性降低,固体产物产率升高,进而说明有利于活性炭产率的提高。  相似文献   

20.
用煤焦油沥青制备优质活性炭的研究   总被引:1,自引:0,他引:1  
以煤焦油沥青为原料,使用KCNS溶液活化处理,选择适宜的工艺条件,制备出优质的活性炭。讨论了煤焦油沥青热处理温度、中间相沥青的粒径、KCNS溶液的浓度、KCNS溶液与中间相沥青的液固化、炭化温度、炭化时间、活化温度、活化时间等主要因素对活性炭性能的影响。结果表明,在适宜的工艺条件下制备的活性炭,强度为90.4%,比表面积为2601.0m^2/g,吸碘值为2216.7mg/g,吸苯值为1099.1mg/g,吸亚甲基蓝值为397.5mg/g,产品性能优良。图1,表8,参7。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号