首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 593 毫秒
1.
赵伟  陈昊  范勇 《复合材料学报》2019,36(8):1822-1829
采用砂磨机将疏水性气相SiO2纳米粒子分散到无溶剂环氧树脂(Epoxy,EP)中,经加热固化后制备了不同掺杂量的疏水性气相SiO2/EP复合材料,通过XRD检测和SEM表征,证实疏水性气相SiO2纳米粒子以无定形态均匀分散在EP中。疏水性气相SiO2/EP复合材料的理化性能测试结果表明:其热稳定性、介电常数、介电损耗和电导率均随纳米SiO2粒子掺杂量的增加而有所升高;纳米SiO2粒子掺杂量为2wt%时,击穿场强达到最大值为24.66 kV/mm,较纯EP材料提高了21.35%;疏水性气相SiO2/EP复合材料耐电晕寿命随纳米SiO2粒子掺杂量增加而增加。在室温、80 kV/mm电场强度下,纳米SiO2粒子掺杂量为8wt%时,疏水性气相SiO2/EP耐电晕寿命可达42.7 h,是纯EP的18.9倍。   相似文献   

2.
纳米SiO2 对双酚A环氧树脂电子束固化特性的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
探讨了电子束固化纳米SiO2 / 双酚A 环氧树脂复合材料体系的温度、固化度、固化区域的尺寸和动态力学性能随纳米粒子含量的变化规律, 研究了纳米SiO2 对体系电子束辐射固化特性的影响。结果表明, 随着纳米粒子含量的增加, 体系的放热峰逐渐降低; 少量纳米粒子的加入有助于增大试样固化区域的尺寸、提高固化度、玻璃化转变温度和高温模量; 纳米SiO2 的加入改变了电子束的传播途径, 但其电子束固化生长机制与未加入纳米粒子的纯树脂体系相似。   相似文献   

3.
SiO2 / 氰酸酯纳米复合材料的力学性能和热性能   总被引:13,自引:0,他引:13       下载免费PDF全文
采用高速均质剪切法制备了SiO2 / 氰酸酯(CE) 纳米复合材料, 并对该体系的静态力学性能、动态力学性能和热稳定性进行了研究。结果表明, 纳米SiO2的加入提高了复合材料的冲击强度和弯曲强度。当SiO2 含量为0. 30 wt %时, 复合材料的冲击强度达最大, 增幅为88. 9 %; 当SiO2含量为0. 15 wt %时, 材料的弯曲强度达最大, 增幅为2010 %。复合材料的储能模量和高温损耗模量较纯CE 树脂有明显提高, 玻璃化转变温度比纯CE 提高了31. 2 ℃, 热分解温度在SiO2含量为0. 30 wt %时达最大, 失重为10 %时的热分解温度提高了25. 7 ℃。   相似文献   

4.
采用改进Hummers法制备了氧化石墨烯(GO),并将GO与经硅烷偶联剂γ-氨丙基三乙氧基硅烷(KH550)改性的纳米SiO2进行复合,制备出纳米SiO2-GO。通过FTIR、XRD、SEM、TEM等分析手段对SiO2-GO进行表征。采用机械搅拌与超声分散的方法将SiO2-GO添加到环氧树脂(EP)中。对添加不同质量分数纳米SiO2、GO和纳米SiO2-GO的EP基复合材料涂层的物理性能和电化学性能进行测试。结果表明,与纯EP涂层相比,SiO2/EP、GO/EP和纳米SiO2-GO/EP复合材料涂层的硬度、附着力和耐腐蚀性能得到显著增强,其中加入2wt%纳米SiO2-GO/EP复合材料涂层硬度达到5 H,附着力等级达到1级,浸泡24 h后涂层保护效率为99.33%。15天浸泡试验结果表明,添加1.5wt%纳米SiO2-GO/EP复合材料涂层的硬度达到5 H,附着力达到1级,涂层保护效率仍能达到97.12%。  相似文献   

5.
樊星  陈俊林  王凯  肇研 《复合材料学报》2018,35(9):2397-2404
利用纳米SiO2改性聚苯硫醚(PPS)树脂及玻璃纤维(GF)/PPS复合材料,探究纳米SiO2对PPS树脂及GF/PPS复合材料性能的影响规律。采用熔融共混工艺制备纳米SiO2/PPS树脂,并采用热压成型方法制备纳米SiO2-GF/PPS复合材料,利用SEM、DSC、DMA和力学测试表征不同纳米SiO2含量的SiO2/PPS和SiO2-GF/PPS复合材料。结果表明:纳米SiO2通过熔融共混工艺能够均匀分散在PPS基体中,并提高PPS结晶度和弯曲性能。添加1wt%纳米SiO2有效提高了GF/PPS复合材料的力学性能:层间剪切强度提高49.4%,弯曲强度提高30.6%,弯曲模量提高14.6%。纳米SiO2的添加可以提高GF/PPS复合材料的玻璃化转变温度,同时纳米SiO2能够改善树脂基体韧性并阻碍裂纹的扩展。  相似文献   

6.
以环氧树脂(EP)为基体,通过添加玻璃鳞片(GF)和改性纳米SiO2制备了SiO2/GF/EP复合涂料,考察了纳米SiO2添加量对复合涂料性能的影响,通过傅里叶变换红外光谱仪和扫描电子显微镜对涂层的结构和断面形貌进行了表征。结果表明:利用硅烷偶联剂对纳米SiO2进行改性处理,在其表面引入了可与环氧基团反应的氨基基团;当纳米SiO2添加量为5%(质量分数)、GF添加量为30%(质量分数)时,复合涂层的硬度比纯EP提高了57.7%,磨损失重和摩擦系数比纯EP减小了57.0%、49.3%;改性纳米SiO2和GF与EP基体界面相容性良好,与纯EP相比,SiO2/GF/EP复合涂层的韧性和致密性明显提高。  相似文献   

7.
以纳米粒子SiO2为核、表面活性剂N,N-十二基-N-甲基-N-(3-三甲氧基甲硅烷基丙基)氯化铵(SID3392)为颈状层、聚(乙二醇)4-壬基苯基醚3-磺丙基钾盐(PEGS)为冠状层,制备出了无溶剂纳米SiO2流体。无溶剂纳米SiO2流体为牛顿流体,在室温下具有较低的黏度,在26.5 ℃时其黏度为4.3 Pa·s,无溶剂纳米SiO2流体中SiO2的含量为13.65wt%。将该无溶剂纳米SiO2流体加入环氧树脂中,制备了无溶剂纳米SiO2流体/环氧树脂复合材料。TEM结果表明: 无溶剂纳米SiO2流体在环氧树脂基体中具有良好的分散性。DSC测试表明: 无溶剂纳米SiO2流体的加入会略微降低环氧树脂的固化温度。当纳米SiO2流体加入量为2.5wt%时,复合材料的冲击性能提高了164.7%,玻璃化温度提高了15.4 ℃。断面SEM结果显示无溶剂纳米SiO2流体能够提高环氧树脂的韧性。  相似文献   

8.
以石墨烯和正硅酸乙酯为原料用溶胶-凝胶法制备了Graphene/SiO2纳米复合材料,用球盘式摩擦磨损试验机评价其作为水基润滑添加剂在不同载荷和浓度下的摩擦学性能。用扫描电镜(SEM)、X射线光电子能谱(XPS)等手段表征了摩擦副的表面形貌和元素特征。结果表明:在15N载荷工况下,Graphene/SiO2纳米复合材料作为添加剂在超纯水中含量为0.2%(质量分数)时具有最佳的摩擦学性能,比超纯水的摩擦系数降低了17.9%,钢球磨损率降低了61.7%。基于磨损表面分析提出的润滑机制为:在摩擦过程中,Graphene/SiO2纳米复合材料在磨损表面生成的物理吸附膜、Graphene的层状剪切作用以及SiO2在磨损表面的修复作用和滚珠轴承作用,使超纯水的摩擦学性能提高。  相似文献   

9.
以乙烯基树脂(VE)为基体,竹纤维(BF)为增强材料,通过偶联剂KH602对纳米SiO2进行改性处理,并利用改性后纳米SiO2分别对竹纤维和树脂进行改性处理,采用真空辅助树脂传递模塑成型工艺(VARTM)制备了BF/VE复合材料。采用FTIR、SEM对改性后纤维和树脂的表面物理化学状态进行表征,结果表明:改性纳米SiO2成功化学接枝到竹纤维表面且分散到树脂基体中,改性纳米SiO2在BF1/VE0.5 (用1.0wt%改性纳米SiO2改性纤维和0.5wt%改性纳米SiO2改性树脂)复合材料中分散更为均匀;采用力学试验机和SEM对复合材料力学、断口和表面形貌进行分析,考察改性纳米SiO2的添加量对BF/VE复合材料力学性能、界面性能的影响。结果表明:BF1/VE0.5复合材料的拉伸、弯曲及冲击强度分别达到最大值49.0 MPa、70.6 MPa和150.4 J/m,与未处理的复合材料相比分别提高了18.9%、26.1%、70.7%。此外,还初步探讨了改性纳米SiO2的界面增强机制。   相似文献   

10.
以端羧基丁腈橡胶(CTBN)和纳米SiO2(nano SiO2)为增韧剂,先利用相反转法将CTBN与环氧树脂(EP)的共聚物制备成乳液,然后加入nano SiO2进行共混,最后加入固化剂经梯度升温固化制得nano SiO2-CTBN改性的水性环氧树脂(nano SiO2-CTBN/WEP)复合材料。通过FTIR、SEM、TEM、万能拉伸试验仪和TG对nano SiO2-CTBN/WEP复合材料的性能进行表征。结果表明:当CTBN含量为20%(与EP E-51的质量比)时,所制备的CTBN/WEP具有较好的储存稳定性,在此基础上加入nano SiO2,当其含量为3%时增韧效果最好,nano SiO2-CTBN/WEP的拉伸强度达14.5 MPa,断裂伸长率达9.1%,冲击强度为11.3 kJ/m2,弯曲强度达22.4 MPa,较未添加nano SiO2的CTBN/WEP分别提高了40.1%、27.4%、73.9%和72.7%,其初始热分解温度也提高了近25℃。  相似文献   

11.
为提高纳米SiO2在硅橡胶(SR)基体中的分散性及两相间的界面结合力,设计以羟基硅油(HSO)和γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)为纳米SiO2的表面封端改性剂,并将改性SiO2与双组份加成型液体SR复合得到改性纳米SiO2/SR复合材料。通过一系列表征手段对改性纳米SiO2的形貌结构及其在乙醇中的分散性等进行分析,研究了改性纳米SiO2对纳米SiO2/SR复合材料的断面形貌、力学性能及热稳定性的影响。结果表明:KH570成功接枝到纳米SiO2表面并与SR基体间形成化学键。当HSO协同KH570改性纳米SiO2时,可有效改善纳米SiO2在SR基体中的分散性能及纳米SiO2与SR两相间的界面结合性能,并显著提高纳米SiO2/SR复合材料的力学性能和热稳定性。将SiO2∶HSO∶KH570以质量比为2.0∶0.2∶0.6处理的改性纳米SiO2粒子,得到的改性纳米SiO2/SR复合材料起始热分解温度提高了230℃。当SiO2∶HSO∶KH570质量比为2.0∶0.2∶0.45时,改性纳米SiO2/SR复合材料的拉伸强度和断裂伸长率分别提高了约1倍。   相似文献   

12.
为了研究纳米复合介质的吸潮特性及其对介电性能的影响,应用Materials Studio仿真分析MgO及SiO2纳米粉末对水分子的吸附能,探讨了相关的吸潮机制及纳米MgO和纳米SiO2粉末的吸潮特性,对吸潮前后MgO/低密度聚乙烯(LDPE)和SiO2/LDPE复合介质介电性能的变化进行了试验研究。研究结果表明,水分子在氧化物表面的吸附点位主要是O原子,由于纳米SiO2属无定形,水分子可渗入SiO2纳米粒子内部与更多的O原子形成吸附作用,纳米SiO2具有更大的吸潮量。由于纳米MgO对水分子的吸附能大于纳米SiO2对水分子的吸附能,水分子更难被移除。纳米MgO/LDPE和纳米SiO2/LDPE复合介质较LDPE更易吸潮,其原因是纳米粒子吸附水分子能力较强所致。吸潮对MgO/LDPE和纳米SiO2/LDPE复合介质的介电性能有较大影响,吸潮后复合介质的电流密度值明显上升,水分子的存在可能破坏了原有界面区的紧密结构和荷电特性,削弱了复合介质对载流子迁移的抑制能力。当测试温度增加至60℃以上,受潮后复合介质吸附的水分子基本被移除,纳米MgO/LDPE和SiO2/LDPE复合介质的电流密度值恢复到同干燥试样的电流密度值基本一致。  相似文献   

13.
通过表面接枝技术将硬脂酸甘油酯型流滴剂(B)接枝到纳米SiO2(nano SiO2)表面,制得了nano SiO2接枝B的接枝物(nano SiO2-g-B);将nano SiO2-g-B与预辐照聚乙烯(ir-LLDPE)熔融挤出接枝,制备了nano SiO2-g-B/ir-LLDPE复合材料。利用FTIR、SEM、DSC和加速流滴等对材料的结构和性能进行了表征。结果表明:nano SiO2-g-B/ir-LLDPE复合材料的熔融温度和结晶温度降低,其力学性能较ir-LLDPE没有较大的变化;与普通共混的方法相比,nano SiO2接枝流滴剂方法制备的nano SiO2-g-B/ir-LLDPE复合材料薄膜的流滴期最高可延长6天,达到25天,是相同条件下普通商用流滴剂薄膜的1.47倍。  相似文献   

14.
将光棒废料烘干、破碎、煅烧和研磨,分别由KH-570和A-151表面改性制备KH-570/SiO2和A-151/SiO2废料粉末,再把改性前后的粉末分别与EP共混固化制备出复合材料。疏水性测试、FT-IR和SEM观测的结果表明,两种偶联剂对废料颗粒的改性效果较好,其中A-151的改性效果更好。几种复合材料拉伸性能的排序为A-151/SiO2/EP>KH-570/SiO2/EP>未改性粉末/EP,且粉末填充质量分数为20%的材料拉伸性能最优,其拉伸强度分别为49.37 MPa、45.57 MPa、44.36 MPa,比纯EP固化物分别提高了19.9%、10.7%和7.8%,断裂伸长率的提高量最大,比纯EP固化物分别提高了0.92%、0.82%和0.46%。改性效果好的废料粉末填充制备的复合材料,其耐热性能更优。  相似文献   

15.
采用液相原位修饰技术,制备了表面接枝有机硅烷的纳米SiO2(HB-2200)、表面接枝氨基的纳米SiO2(HB-2205N)、表面接枝不饱和双键的纳米SiO2(HB-2205D)、表面接枝氨基和双键的纳米SiO2(HB-2205ND)。利用TEM、SEM、流变仪对纳米SiO2/溶液聚合丁苯橡胶-顺丁橡胶(SSBR-BR)复合材料的结构和性能进行表征。结果表明:与未改性的纳米SiO2相比,表面功能化纳米SiO2与橡胶基体相容性改善,Payne效应降低,纳米SiO2之间的相互作用减弱,其在SSBR-BR复合材料中的分散性提高。HB-2200/SSBR-BR复合材料的混炼扭矩降低了35.7%,混炼能耗降低了15%,结合胶含量增加,填料/橡胶之间的界面结合作用增强,拉伸强度提高了60%。动态热力学和磨耗性能分析表明:纳米SiO2表面引入可反应性双键(HB-2205D),使HB-2205D/SSBR-BR复合材料的抗湿滑性能提高了40%,滚动阻力降低了43%。纳米SiO2表面接枝可反应性双键,可在不牺牲HB-2205D/SSBR-BR复合材料耐磨性能的基础上,降低其滚动阻力,提高其抗湿滑性能,为高性能轮胎的制备提供基础原材料。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号