首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
为改善双马来酰亚胺树脂(BMI)脆性过大、耐热性不足的缺点,以末端含有氨基的纳米SiO2(SiO2-NH2)为原料,通过溶剂法制备出结构中含有SiO2的苯并噁嗪树脂单体(SiO2-BOZ),作为改性体系加入到BMI中进行共混,制备出一种耐热性能、韧性良好的新型SiO2-BOZ/BMI树脂材料,并详细研究了SiO2-NH2的添加对BMI固化反应动力学的影响。结果表明,当SiO2-BOZ添加量达到15.0wt%时,SiO2-BOZ/BMI树脂复合材料的表观活化能较纯BMI树脂得到了一定程度的降低,SiO2-BOZ/BMI的弯曲强度达到最大值166.12 MPa,较纯BMI 增加了32.3%,且具有比BMI更好的耐热性能。   相似文献   

2.
以3,3’-二烯丙基双酚A(BBA)、双酚A双烯丙基醚(BBE)为活性稀释剂、4,4’-二氨基二苯甲烷双马来酰亚胺(MBMI)为反应单体合成聚合物基体(MBAE),以两种热塑性树脂(聚醚砜(PES)和磺化聚醚醚酮(SPEEK))为增韧剂、以溶胶-凝胶法(Sol-Gel)制备的纳米Al2O3为改性剂,制备了Al2O3-PES-SPEEK/MBAE复合材料,并采用FTIR、SEM、冲击强度、弯曲强度、弯曲模量和热失重测试的方法研究复合材料的微观形貌、力学性能和耐热性。结果表明:SPEEK中存在磺酸基团,微观结构更松散,磺化度约为41.3%;Al2O3为纳米级短纤维状晶体,表面含有活性羟基。Al2O3-PES-SPEEK/MBAE复合材料的微观形貌表明:适量的PES、SPEEK和Al2O3在基体树脂中分散均匀,断面形貌呈鱼鳞状,断裂纹不规则且发散,断裂方式为韧性断裂。力学性能测试结果显示,当PES、SPEEK及Al2O3质量分数分别为3 wt%、2 wt%和3 wt%时,Al2O3-PES-SPEEK/MBAE复合材料的弯曲强度、弯曲模量和冲击强度为172.9 MPa、4.7 GPa和21.4 kJ/m2,分别比基体树脂提高了73.1%、74.1%和125.3%,并且Al2O3-PES-SPEEK/MBAE复合材料的热分解温度为453.5℃,比基体树脂提高了15.4℃,Al2O3-PES-SPEEK/MBAE复合材料的力学性能和耐热性有较大提高。   相似文献   

3.
为研究聚醚砜(PES)增韧双马来酰亚胺(BMI)与环氧树脂(EP)体系的微观结构与性能,采用原位聚合法制得PES/BMI-EP复合材料。通过FTIR和SEM分析可知PES未与BMI-EP树脂发生化学反应,而是与BMIEP分子间存在强烈的相互作用,并以两相结构存在,是多相复合材料。在PES/BMI-EP复合材料中,PES为分散相,相与相之间界面模糊,其断面裂纹不光滑方向发生改变,为典型的韧性断裂形貌;能谱测试结果证明PES与基体间存在相互渗透现象,PES均匀的分散于基体树脂中。力学测试分析结果显示:当PES含量为4wt%时,PES在基体树脂中分散性较好,其弯曲强度与冲击强度达到最高,为144.9MPa和19.7kJ/m2,比BMI-EP基体树脂分别提高41.2%和90%;热失重测试结果显示,适量的PES能提高PES/BMI-EP复合材料的分解温度,过量添加不利于材料分解温度的升高。  相似文献   

4.
针对特高压气体绝缘金属封闭开关设备(GIS)用Al2O3/环氧树脂(EP)复合材料,采用非等温差示扫描量热(DSC)法研究了Al2O3/EP复合材料的固化行为,对其DSC曲线进行分峰处理,利用等转化率方法求得不同反应阶段的表观活化能。根据Málek判据得到Al2O3/EP复合材料的固化行为符合的模型类型,并求得不同反应阶段的各个动力学参数及固化动力学方程。利用SEM观察Al2O3/EP复合材料的微观形貌,通过动态热力学分析仪(DMA)分析其动态热力学性能和高温蠕变性能,利用时温等效预测了Al2O3/EP复合材料的长时蠕变行为。结果表明,DSC热流曲线表现为双峰分布;Al2O3/EP复合材料的两个反应阶段的表观活化能分别为35.3 kJ/mol及48.1 kJ/mol,Sestak-Berggren自催化模型能够很好地描述Al2O3/EP复合材料体系在不同固化阶段的固化行为。Al2O3颗粒均匀分散于树脂基体中,填料的加入使裂纹发生偏转。Al2O3/EP复合材料的储能模量(E')随温度的升高而降低,损耗因子(tanδ)峰值对应的玻璃化转变温度(Tg)为120.03℃。Al2O3/EP复合材料的抗蠕变性能随着拉伸应力和温度的增加而减弱,随着时间的延长,其蠕变速率减小。   相似文献   

5.
采用溶胶-凝胶法(Sol-gel)分别制备Al2O3和SiO2,同时以KH560为架桥剂制得SiO2包覆Al2O3(KH560-Al2O3@SiO2)的增强体。以双马来酰亚胺树脂和酚醛环氧树脂(MBMI-EPN)为基体、4’4-二氨基二苯甲烷(DDM)为固化剂,采用原位聚合法制备了KH560-Al2O3@SiO2/MBMI-EPN复合材料;表征KH560-Al2O3@SiO2的微观结构及该增强体对复合材料性能的影响。结果表明:Al2O3@SiO2粒子微观结构清晰,核壳结构完整,内核为短纤维状Al2O3,外壳为无定形SiO2,二者通过化学键方式相连;Al2O3@SiO2表面成功接枝上KH560基团,粒子堆积现象减弱。KH560-Al2O3@SiO2/MBMI-EPN复合材料的微观形貌显示:KH560-Al2O3@SiO2在MBMI-EPN基体中形成多相结构、分散性较好、界面作用稳定且断面形貌呈鱼鳞状,并未发现Al2O3@SiO2粒子团聚体,整体结构完整。当KH560-Al2O3@SiO2含量为1.5wt%时,复合材料的弯曲强度与冲击强度分别为126 MPa和14.7 kJ/m;,比树脂基体分别提高了21.2%和27.8%;材料的热分解温度为392.3℃,比树脂基体提高了14.5℃,力学性能和耐热性得到明显改善。  相似文献   

6.
为了改善聚酰亚胺(PI)的热学性能和冲击断裂强度、弯曲强度和硬度等力学性能,通过液相刻蚀三元层状陶瓷Ti3AlC2制备了二维层状结构纳米Ti3C2Tx,利用XRD、FE-SEM对产物进行了物相分析和微观结构表征;采用湿法球磨和热压成型法制备了不同Ti3C2Tx含量的Ti3C2Tx/PI复合材料,考察了Ti3C2Tx对复合材料热学性能、冲击断裂强度、弯曲强度和硬度等的影响,并分析了断面形貌。结果表明,所制备的Ti3C2Tx为纳米片层结构,片层厚度为20~50 nm,片层堆叠;二维Ti3C2Tx在PI基体中分散均匀,且固化过程中PI进入Ti3C2Tx层间提高了二者之间的结合力,使界面结合良好;Ti3C2Tx纳米片的添加提高了PI的玻璃化转变温度并改善了基体的冲击断裂强度、弯曲强度和硬度等,当Ti3C2Tx添加量为0.25wt%时,Ti3C2Tx/PI复合材料的玻璃化转变温度提高了17℃,冲击断裂强度提高了31%。  相似文献   

7.
采用双酚A型环氧树脂(DGEBA)、改性咪唑(MIM)及改性脂肪胺(MAA)研制快速固化树脂体系。分别利用DSC和流变仪测试了树脂体系的固化特性与流变行为,优选了树脂配方。采用真空辅助树脂灌注工艺(VARIM)制备了快速成型的碳纤维/环氧复合材料层板,考察了层板的成型质量和力学性能,并与常规固化的层板性能进行了对比。结果表明:采用优选的树脂配方,120 ℃下树脂在5 min内固化度达95%,碳纤维/环氧复合材料层板成型固化时间可控制在13 min以内,固化度达95%以上,并且没有明显缺陷;与常规固化相比(固化时间大于2 h),快速固化碳纤维/环氧复合材料层板的弯曲性能和耐热性能降低幅度较小。  相似文献   

8.
采用SiO2中空微球对含硅芳炔树脂(PSAC)进行改性,制备了SiO2/PSAC复合材料,以改善PSAC固化后质脆的缺点,提高PSAC基复合材料的力学性能,拓展PSAC在航空航天领域的应用。对SiO2/PSAC复合材料和石英纤维布增强SiO2/PSAC(QF-SiO2/PSAC)复合材料的结构与性能进行了研究,采用SEM分析SiO2/PSAC树脂浇铸体和QF-SiO2/PSAC复合材料断面微观结构,并分析SiO2的增韧机制。采用DMA和TGA分析了SiO2/PSAC复合材料耐热性能和热稳定性,虽然SiO2会导致树脂耐热性能略有下降,但其中空结构使树脂具有优异介电性能。当SiO2的添加量达2wt%时,SiO2/PSAC树脂浇铸体弯曲强度达22.3 MPa,失重5%温度为551℃,1 000℃残留率为86.5%;QF-2SiO2/PSAC复合材料的弯曲强度为298.3 MPa,弯曲模量达31.0 GPa,分别提高了27.5%、59.0%;当SiO2添加量为5wt%时,QF-5SiO2/PSAC复合材料的剪切强度提高了16.0%。   相似文献   

9.
采用水热法合成Ni0.5Co0.5Fe2O4铁氧体,并应用于氰酸酯-环氧树脂(CE-EP)复合材料的增韧改性,研究Ni0.5Co0.5Fe2O4铁氧体对CE-EP固化反应、力学性能及热稳定性的影响。XRD和SEM结果表明,所合成的Ni0.5Co0.5Fe2O4铁氧体结晶性好、纯净、呈块状,粒径约为20 nm。性能研究表明,Ni0.5Co0.5Fe2O4铁氧体的加入对CE和EP间的固化反应速度影响不大,且不会改变树脂基体的固化反应机制。与纯CE-EP树脂体系相比,Ni0.5Co0.5Fe2O4铁氧体/CE-EP复合材料在保持CE-EP玻璃化转变温度(Tg)的基础上明显改善了其韧性,当Ni0.5Co0.5Fe2O4铁氧体质量分数为3wt%时,其冲击强度和弯曲强度达到最大值,较纯CE-EP树脂基体分别提高了65%和30.3%;但其热分解温度略有降低,可能是由于Ni0.5Co0.5Fe2O4铁氧体对CE-EP树脂基体高温分解的催化作用造成的。   相似文献   

10.
樊星  陈俊林  王凯  肇研 《复合材料学报》2018,35(9):2397-2404
利用纳米SiO2改性聚苯硫醚(PPS)树脂及玻璃纤维(GF)/PPS复合材料,探究纳米SiO2对PPS树脂及GF/PPS复合材料性能的影响规律。采用熔融共混工艺制备纳米SiO2/PPS树脂,并采用热压成型方法制备纳米SiO2-GF/PPS复合材料,利用SEM、DSC、DMA和力学测试表征不同纳米SiO2含量的SiO2/PPS和SiO2-GF/PPS复合材料。结果表明:纳米SiO2通过熔融共混工艺能够均匀分散在PPS基体中,并提高PPS结晶度和弯曲性能。添加1wt%纳米SiO2有效提高了GF/PPS复合材料的力学性能:层间剪切强度提高49.4%,弯曲强度提高30.6%,弯曲模量提高14.6%。纳米SiO2的添加可以提高GF/PPS复合材料的玻璃化转变温度,同时纳米SiO2能够改善树脂基体韧性并阻碍裂纹的扩展。  相似文献   

11.
以双酚A型环氧树脂(E51)和双酚A型氰酸酯(BCE)为原料,研究E51改性BCE共固化反应机制。同时,以E51-BCE为基体树脂,溶胶-凝胶法(Sol-Gel)自制Al2O3为增强体,制备Al2O3改性E51-BCE (Al2O3/E51-BCE)复合材料。通过非等温DSC确定了E51-BCE体系的固化工艺及固化反应动力学,并根据Kissinger法和Ozawa法求得体系的表观活化能分别为66.13 kJ/mol和69.46 kJ/mol。利用红外光谱跟踪固化体系在起始固化温度为160℃、 180℃时的反应历程,结果表明:起始固化温度在160℃时,以E51与BCE直接反应为主;起始固化温度在180℃时, BCE反应活性提高,以BCE自聚反应为主,生成三嗪环的速率加快,少量的BCE直接与E51反应生成恶唑啉结构。对Sol-Gel法自制Al2O3进行FTIR和TEM表征,结果表明:Al2O3为短纤维状的晶体,表面含有少量羟基。SEM结果显示:Al2O3为分散相,与基体间界面模糊, Al2O3/E51-BCE复合材料的脆断面裂纹不规则,为典型的韧性断裂;当Al2O3掺杂量为3wt%时, Al2O3在基体中分散均匀, Al2O3/E51-BCE复合材料的冲击强度和弯曲模量分别为24.2 kJ/m2和2.54 GPa,比基体树脂的冲击强度和弯曲模量分别提高53.65%和22.12%,力学性能得到明显改善。  相似文献   

12.
为研究增韧双马来酰亚胺方法及其对性能的影响,首先利用超临界乙醇处理纳米SiO2(SCE-SiO2),改善其表面活性;然后以4,4’-二氨基二苯甲烷双马来酰亚胺(MBMI)、3,3’-二烯丙基双酚A(BBA)、双酚A双烯丙基醚(BBE)为原料合成了MBMI-BBA-BBE(MBAE)复合材料基体,并利用原位聚合法和溶胶-凝胶法将SCESiO2和聚醚砜(PES)加入MBAE基体中制备了SCE-SiO2/PES-MBAE多相复合材料;最后采用SEM观察了SCESiO2/PES-MBAE复合材料断面形貌。SCE-SiO2的FTIR分析结果表明:在3 434cm-1处的Si—OH的吸收峰消失,出现了3 310cm-1处的乙醇分子间—OH的吸收峰、2 984cm-1处的甲基和亚甲基的吸收峰,证明纳米粒子可能以某种形式结合了乙醇分子,改善了表面性能。PES以"蜂窝"状分散相的形式存在于基体中,断裂方式由脆性断裂向韧性断裂转变,SCE-SiO2和PES对材料均有增韧作用,PES的增韧效果更明显,二者之间具有协同作用,当SCE-SiO2含量为2wt%、PES含量为4wt%时,多相复合材料的冲击强度和弯曲强度分别为15.02kJ/m2和130.47MPa,较MBAE树脂分别提高了57.3%和35.8%。介电性能测试表明:SCE-SiO2和PES的引入均会导致SCE-SiO2/PES-MBAE复合材料的介电常数和损耗略有上升,但二者之间的协同作用可以抑制PES组分所带来的负面影响。  相似文献   

13.
周宏  张玉霞  范勇  陈昊 《复合材料学报》2014,31(5):1142-1147
采用水热法制备片状纳米Al2O3,经过偶联剂改性后与环氧树脂复合,通过溶液混合法制备了不同填充量的片状纳米Al2O3/环氧树脂复合材料,研究了片状纳米Al2O3用量对片状纳米Al2O3/环氧树脂复合材料介电性能和热性能的影响,利用SEM对复合材料的断口形貌进行了表征。结果表明: 片状纳米Al2O3在环氧树脂基体中分散良好;随着片状纳米Al2O3填充量的增加,复合材料的起始热分解温度升高、介电强度增大,当片状纳米Al2O3的填充量为7wt%时,复合材料的介电强度为 29.58 kV/mm,比纯环氧树脂的介电强度提高了30%;复合材料的介电常数(3.8~4.5)和介电损耗(0.015)比纯环氧树脂稍有增大,但仍维持在较好的介电性能范围内。  相似文献   

14.
采用3-缩水甘油醚氧基丙基三甲氧基硅烷(KH-560)修饰纳米二氧化硅(nano-SiO2)获得改性纳米二氧化硅(KH-SiO2)。以酚醛环氧树脂(F51)和双马来酰亚胺(BMI)作为基体,添加4%(质量分数,下同)聚醚砜(PES)和不同含量(0.5%~2.5%)的KH-SiO2,制备KH-SiO2/PES/BMI-F51多相复合材料。红外光谱(FT-IR)、扫描电镜(SEM)和透射电镜结果表明:纳米SiO2表面修饰效果良好,纳米粒子团聚倾向减弱,粒径减小,比表面积增大。介电性能测试结果表明:随着KH-SiO2掺杂量的增加,材料的介电常数先降低后升高,介电损耗没有明显变化,体积电阻率和击穿强度先升高后降低。当KH-SiO2掺杂量为1.5%时,10Hz下介电常数和介电损耗角正切分别为4.55和0.0029,体积电阻率和击穿强度分别为1.74×10^14Ω·m和29.11kV/mm,比树脂基体提高了68.9%和35.9%。  相似文献   

15.
采用粘稠塑性加工方法制备了锆钛酸铅方形压电纤维复合材料, 研究了环氧树脂中不同TiO2含量对压电纤维复合材料的电学阻抗、抗拉及驱动应变性能的影响。结果表明: 环氧树脂中TiO2含量不同, 压电纤维复合材料的谐振频率不同。压电纤维复合材料的抗拉强度及纵向自由应变值均随着环氧树脂中TiO2含量增大先增加后减小。环氧树脂中TiO2含量为3wt%的压电纤维复合材料的抗拉强度达到了77.50 MPa, 且在驱动电压为-500 V~+1500 V时, 其纵向自由应变值达到了1783.7 με。当环氧树脂中TiO2含量从3wt%增大至5wt%时, 压电纤维复合材料的抗拉性能和驱动应变性能均有所降低。在不同的外加驱动频率下, 压电纤维复合材料表现出不同的驱动应变能力。随着频率的增大, 压电纤维复合材料的纵向自由应变幅度表现出明显降低, 当频率超过5 Hz后, 其纵向自由应变值略有减小。  相似文献   

16.
以第3代环氧端基脂肪族超支化聚酯(EHBP)增韧的环氧树脂(E-51)为基体材料,超支化聚酯基二茂铁(HBPE-Fc)为吸波剂,制备具有一定力学承载及电磁性能的超支化聚酯基二茂铁/环氧树脂(HBPE-Fc/E-51)复合材料,并通过力学性能测试及扫描电镜、矢量网络分析仪等研究了该复合材料的力学及电磁性能。结果表明,添加较低含量的HBPE-Fc能较好地改善环氧树脂体系的拉伸及冲击性能,第4代HBPE-Fc质量分数为2%时,与纯环氧树脂体系相比,HBPE-Fc/E-51复合材料的拉伸强度、断裂伸长率和冲击强度分别提高了21.81%、34.32%和15.41%,对固化体系的拉伸断面分析发现引入HBPE-Fc后材料表现出韧性断裂。HBPE-Fc/E-51复合材料的玻璃化转变温度在105.29~130.27 ℃之间,具有良好的热稳定性,同时该复合材料具有一定的电磁特性。  相似文献   

17.
A phenyl-trifluoromethyl (-Ph-CF3) groups modified epoxy resin, diglycidylether of bisphenol A-fluorine (DGEBA-F), was synthesized and the physical properties, such as curing behaviors, thermal stabilities, and dielectric constant of the DGEBA-F/4,4′-diaminodiphenyl methane (DDM) system were investigated and compared with commercial DGEBA/DDM system. For the mechanical behaviors of the specimens, the fracture toughness and impact tests were performed, and their fractured surfaces were examined by using a scanning electron microscope (SEM). The dielectric constant values of the DGEBA-F/DDM system were lower than those of the DGEBA/DDM system and the mechanical properties of the casting DGEBA-F specimens were higher than those of the DGEBA specimens. This was probably due to the fact that the introduction of the -Ph-CF3 groups into the side chain of the epoxy resin resulted in improving the electrical properties and toughness of the cured DGEBA-F epoxy resin.  相似文献   

18.
赵伟  陈昊  范勇 《复合材料学报》2019,36(8):1822-1829
采用砂磨机将疏水性气相SiO2纳米粒子分散到无溶剂环氧树脂(Epoxy,EP)中,经加热固化后制备了不同掺杂量的疏水性气相SiO2/EP复合材料,通过XRD检测和SEM表征,证实疏水性气相SiO2纳米粒子以无定形态均匀分散在EP中。疏水性气相SiO2/EP复合材料的理化性能测试结果表明:其热稳定性、介电常数、介电损耗和电导率均随纳米SiO2粒子掺杂量的增加而有所升高;纳米SiO2粒子掺杂量为2wt%时,击穿场强达到最大值为24.66 kV/mm,较纯EP材料提高了21.35%;疏水性气相SiO2/EP复合材料耐电晕寿命随纳米SiO2粒子掺杂量增加而增加。在室温、80 kV/mm电场强度下,纳米SiO2粒子掺杂量为8wt%时,疏水性气相SiO2/EP耐电晕寿命可达42.7 h,是纯EP的18.9倍。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号