首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 477 毫秒
1.
利用无网格迦辽金(Element-free Galerkin,EFG)法建立了正交各向异性结构三维稳态传热分析的计算模型,并推导了其三维EFG法传热离散控制方程。基于该模型编写程序对正交各向异性材料热喷嘴和压力容器的稳态传热算例进行了分析,发现在相同节点分布下三维EFG法温度场比有限元结果更接近参考解,三维EFG传热模型的计算精度比有限元法高,从而验证了该模型的正确性和优越性。同时,对比了各向同性与各向异性结构的温度场分布规律和温度幅值,研究了三维热导率因子及三个材料方向角对传热性能的影响,并给出了这些参数的合理取值范围。结果表明:热导率因子和材料方向角对温度场影响很大,增大热导率因子和材料方向角可使最高温度下降且温度梯度变小;导热方向会随材料方向角发生旋转,三维热导率因子决定主导热方向。对于正交各向异性材料热喷嘴和压力容器,为取得较好的传热效果,建议三维热导率因子在8∶1∶16~16∶1∶32范围内取值,三个材料方向角在45~60°范围内取相同值。在三维复合材料传热结构设计中,合理选取热导率因子和材料方向角可增强结构传热性能、减小温度梯度。  相似文献   

2.
该文开展了热环境下正交各向异性板固有特性和激励响应的研究,通过实验测试与数值计算,分析了其固有频率随温度的变化规律、模态交换或突跳现象、以及激励作用下响应受温度的影响。结果表明:温度引起的热应力与热变形会改变板的动态特性,但两者在热屈曲前后对板刚度的影响机制不同,导致固有频率随温度先降低后上升,且它们的微小变化会导致正交各向异性板的模态交换或突跳现象;激励作用下整体响应曲线随温度升高向低频漂移。  相似文献   

3.
复合材料加筋板热变形和热应力分析   总被引:5,自引:1,他引:4       下载免费PDF全文
复合材料及其结构的热响应是近年来复合材料力学研究的热点课题之一。本文用有限元法研究了复合材料加筋板的热变形和热应力。基于Mindlin假定导出了一阶剪切变形层合板梁理论。这两种理论也适用于中厚板和深梁。考虑的热载可以是瞬态的也可以是稳志的,实际工程应用表明,根据本丈模型研制的计算机程序具有较高的计算精度和效率。   相似文献   

4.
层状正交各向异性材料弹性波导问题的数值计算   总被引:1,自引:1,他引:0       下载免费PDF全文
研究复合材料弹性波导问题的数值计算方法。将问题导向哈密顿体系,在哈密顿体系中以位移向量和应力向量综合成全状态向量,在杂交体系中建立动力-部分杂交元,导出一套哈密顿体系下新的半解析法。本文中给出了该方法在分层正交各向异性材料的弹性波导问题的数值算例。计算结果展现了该方法在弹性波导问题的应用前景。  相似文献   

5.
通过引入适当的Westergaard应力函数,采用复变函数方法和待定系数法对含周期性裂纹正交各向异性纤维增强复合材料板的Ⅰ 型、Ⅱ型问题中裂纹尖端附近的应力场进行了力学分析。在远处对称载荷与斜对称载荷作用下,先给出Ⅰ型、Ⅱ型问题在裂纹尖端处的应力强度因子,然后导出用应力强度因子表示的Ⅰ型、Ⅱ型裂纹问题应力场的解析表达式。此外,应力场大小与材料常数有关,这是正交各向异性材料不同于各向同性材料的特征。由于裂纹的周期分布,应力强度因子的大小取决于形状因子。结果表明,形状因子随着裂纹长度的增加而增大,随着裂纹间距的增大而逐渐下降,当裂纹间距趋于无穷大时,退化为含单个中心裂纹正交各向异性纤维增强复合材料板的结果。   相似文献   

6.
基于有限元法的正交各向异性复合材料结构材料参数识别   总被引:4,自引:0,他引:4  
以大型商用有限元软件ABAQUS为计算平台,提出了正交各向异性复合材料结构材料参数的识别方法。将材料参数识别的问题转化为极小化目标函数的问题,其中目标函数定义为测量位移与有限元计算的相应位移之差的平方和。采用Levenberg-Marquardt方法极小化目标函数,其中灵敏度的计算基于复合材料的有限元离散结构的求解方程对识别的材料参数求导。数值算例表明本文中提出的方法是有效的。在识别参数过程中,参数的初值以及搜索范围的确定对于识别结果有着重要影响。因此必须充分利用材料参数的先验信息。ABAQUS是高效可靠的商用有限元软件,提出的参数识别方法基于这类商用软件,因而该方法有很强的实用性。  相似文献   

7.
基于橡胶材料的非线性和不可压缩特性,建立细观数值模型,采用非线性有限元方法,在细观层面,通过对短纤维增强橡胶复合材料受热载荷和热-结构载荷时的应力传递分析,研究了温度对材料热弹性和失效形式的影响,探讨了对材料热应力影响的细观结构关键因素,揭示了材料的细观破坏机理。研究表明:当受热载荷时,界面处纤维受到的压应力加强了橡胶和纤维的粘合,而纤维的端部容易脱粘;材料受热-拉伸载荷时的应力是热应力及拉伸载荷产生应力的线性组合,且随着温度增大,界面脱粘失效的几率增大,纤维断裂失效的几率减小,温度的升高使复合材料的刚度急剧下降。  相似文献   

8.
多相复合陶瓷刀具材料残余热应力的有限元模拟   总被引:7,自引:0,他引:7       下载免费PDF全文
以SiC和(W,Ti)C颗粒增强Al2O3多相复合陶瓷刀具材料为基础,运用有限元方法详细研究了材料内部残余热应力的大小与分布形态。计算结果发现,单元模型取法、弥散相颗粒大小、分布及其含量均对多相复合陶瓷刀具材料中的残余热应力有较大影响。基体内不仅存在拉应力区,而且存在不同程度和范围的压应力区,拉、压应力区的结构形式与弥散相颗粒的分布方式密切相关。研究表明,残余热应力的存在与材料的力学性能和微观结构有着密切的关系。   相似文献   

9.
在热防护材料及结构高温力学性能研究中,测量其在热载荷与机械载荷作用下产生的变形是重要且基础的工作。基于数字图像相关方法,建立了可实现800℃变形测量的非接触式测量系统。针对陶瓷纤维增强SiO_2气凝胶复合材料,从面外和面内两个材料方向,以25℃为参考温度,试验测量了材料加热至300~800℃范围内不同温度时产生的热变形。研究结果表明,在此试验系统基础上的变形测量方法可用来测量此类热防护材料的高温变形。陶瓷纤维增强SiO2气凝胶复合材料的高温热变形具有明显的各向异性,面外方向上表现为"收缩",面内方向上表现为"膨胀"。SiO_2气凝胶基体中的颗粒团聚以及增强纤维在面内方向上的铺层分布是导致热变形各向异性的主要原因。  相似文献   

10.
梯度复合材料热应力影响因素正交有限元分析   总被引:1,自引:0,他引:1  
为了分析梯度层厚度、梯度层组成相体积分数及组成相长径比三种因素对热应力的影响,建立了梯度复合材料的物理模型,并采用有限元分析方法计算了该模型冷却至室温的热应力,同时使用正交设计对各因素的重要程度进行了数量估计。结果表明:三种因素中梯度层厚度对热应力的影响最为显著,次之为组成相体积分数,而长径比的影响较小。  相似文献   

11.
以复合材料加筋板和连接板为研究对象,进行了考虑材料物性变化、热应力及热变形影响因素的跨越屈曲温度热模态分析,研究了壁板结构的模态演变规律。结果表明:热屈曲前,结构各阶频率因受材料物性变化和热应力的影响逐渐减小,而热屈曲后引起的大变形起到增加结构刚度的作用,频率转而增大。热效应会导致结构模态发生相互演变的现象,且高温阶段具有模态密集特征;加筋板的初始挠度、加筋尺寸和方式不仅改变结构热屈曲温度,也会使模态形式发生变化并呈现局部化特点;连接板结构均匀受热后产生的热变形,会"刚化"与其相似的模态,使该阶模态随着温升跃迁至高阶位置。  相似文献   

12.
对 60 61Al/ Si C层合复合材料在交变温度场作用下的热应力进行数值分析。采用ANSYS有限元分析软件中的结构单元 ,将金属铝视为弹塑性材料 ,且采用 Mises随动强化塑性模型 ,同时计及温度对材料性能的影响 ,计算了不同温度下的残余塑性变形和热应力 ,并给出了2 0 5℃至 2 0℃交变温度场作用下的残余热应力循环曲线 ,数值计算结果与实验数据复合较好。本文的研究工作为该复合材料的疲劳寿命的预报提供良好的理论基础。  相似文献   

13.
The thermal fracture problem of an interface crack between a graded orthotropic coating and the homogeneous substrate is investigated by two different approaches. For the case that most of the material properties in the graded orthotropic coating are assumed to vary as an exponential function, the integral transform and singular integral equation technique is used to obtain some analytical results. In order to analyze the case with more complex material distribution, an interaction integral is presented to evaluate the thermal stress intensity factors of cracked functionally graded materials (FGMs), and then the element-free Galerkin method (EFGM) is developed to obtain the final numerical results. The good agreement is obtained between the numerical results and the analytical ones. In addition, the influence of material gradient parameters and material distribution on the thermal fracture behavior is also presented.  相似文献   

14.
A. Shimamoto  E. Umezaki 《Strain》1998,34(2):59-67
Various types of composite materials are currently being developed and used for automobiles, airplanes, ships and other structures in response to required service conditions which are getting increasingly more severe. Of growing importance under such circumstances is the study of stress analysis and fracture mechanics for these composite material structures. Particularly, the primary concern in design of structures and machines should be the initiation of cracks due to excessive deformation, delamination in material or other material defects. In evaluating safety, it is indispensable from the structural design point of view that K value should be known by an analysis conducted in advance. In this study, stress intensity factor (mode II) under a pure shear stress was obtained using the photoelastic method and caustic method and applying an isotropic material and orthotropic material (copper fibre epoxy composite (CFEC) developed by the authors), each containing the crack. Results were compared with theoretical values. As a result, this method was found useful and the effect of the direction of the primary axis of this material on the stress intensity factor was clarified.  相似文献   

15.
A micromechanical model was developed to predict the thermomechanical deformation of unidirectional filamentary metal matrix composites. The composite is represented by two concentric cylinders, the inner one simulating the fiber and the outer one the matrix. Both elastic and elastic-plastic analyses were performed. In the model the fiber was assumed to be linear-elastic and the matrix a work-hardening elastoplastic material. The elastoplastic analysis was based on the deformation theory of plasticity in conjunction with the von Mises yield criterion. The matrix cylinder in the model was divided into a number (N) of concentric layers with each layer having different values of tangent modulus and Poisson's ratio depending on the amount of plastic deformation. An elastic analysis of a composite cylinder with (N+1) layers was then performed and served as a subroutine for a computer program.The computer program was applied to the study of thermal deformation in the longitudinal and transverse directions of a filamentary silicon carbide/aluminum composite subjected to thermal cycling up to 177°C (350°F). Longitudinal and transverse thermal strains were measured using strain gages. The critical temperature at which the strain-temperature curves become nonlinear was experimentally determined and predicted by the model. Above this critical temperature the longitudinal thermal expansion coefficient decreases while the transverse one increases. The complete three-dimensional state of stress in the fiber and the matrix was computed. It was determined that in addition to the longitudinal stresses high transverse stresses were also developed in the matrix. The experimental thermal strain curves verified the theoretical predictions.  相似文献   

16.
J. Jia  W. Cheng  K. Long 《工程优选》2017,49(8):1335-1353
This article introduces thermal conductivity constraints into concurrent design. The influence of thermal conductivity on macrostructure and orthotropic composite material is extensively investigated using the minimum mean compliance as the objective function. To simultaneously control the amounts of different phase materials, a given mass fraction is applied in the optimization algorithm. Two phase materials are assumed to compete with each other to be distributed during the process of maximizing stiffness and thermal conductivity when the mass fraction constraint is small, where phase 1 has superior stiffness and thermal conductivity whereas phase 2 has a superior ratio of stiffness to density. The effective properties of the material microstructure are computed by a numerical homogenization technique, in which the effective elasticity matrix is applied to macrostructural analyses and the effective thermal conductivity matrix is applied to the thermal conductivity constraint. To validate the effectiveness of the proposed optimization algorithm, several three-dimensional illustrative examples are provided and the features under different boundary conditions are analysed.  相似文献   

17.
An exact elasticity solution is presented for the free and forced vibration of functionally graded cylindrical shells. The functionally graded shells have simply supported edges and arbitrary material gradation in the radial direction. The three-dimensional linear elastodynamics equations, simplified to the case of generalized plane strain deformation in the axial direction, are solved using suitable displacement functions that identically satisfy the boundary conditions. The resulting system of coupled ordinary differential equations with variable coefficients are solved analytically using the power series method. The analytical solution is applicable to shallow as well as deep shells of arbitrary thickness. The formulation assumes that the shell is made of a cylindrically orthotropic material but it is equally applicable to the special case of isotropic materials. Results are presented for two-constituent isotropic and fiber-reinforced composite materials. The homogenized elastic stiffnesses of isotropic materials are estimated using the self-consistent scheme. In the case of fiber-reinforced materials, the effective properties are obtained using either the Mori–Tanaka or asymptotic expansion homogenization (AEH) methods. The fiber-reinforced composite material studied in the present work consists of silicon-carbide fibers embedded in titanium matrix with the fiber volume fraction and fiber orientation graded in the radial direction. The natural frequencies, mode shapes, displacements and stresses are presented for different material gradations and shell geometries.  相似文献   

18.
采用基于复合材料一阶剪切效应理论的有限元法分别研究了含分层损伤的复合材料层合光板、 单向加筋板和格栅加筋(AGS)板的热屈曲性态。在分析中考虑材料热物理性质与温度相关特性, 同时在分层前缘采用了位移约束条件以保证分层区域的各子板的变形相容要求。3种结构的典型算例分析和结果的比较表明, 复合材料格栅(AGS)板具有很强的抗热屈曲的能力, 但是, 分层损伤将使其临界温度降低, 同时还会导致热屈曲的模态发生改变。本文中提出的方法和所得结论对AGS结构的热承载能力预测和损伤容限设计将具有参考价值。   相似文献   

19.
有机相变蓄冷材料的研究进展   总被引:4,自引:0,他引:4       下载免费PDF全文
本文概述了有机相变蓄冷材料和有机-无机复合相变蓄冷材料的研究进展,探讨了采用公式指导低共融物相变蓄冷材料配比和提高有机相变材料导热能力的方法,介绍了相变材料在太阳能利用、电力的峰谷平衡、空调节能与冷藏运输等方面的应用研究。指出相变材料的性能特性、相变机理、传热理论模型及复合技术是有机相变蓄冷材料研究的重点内容,有机复合相变蓄冷材料是今后有机相变材料的重点发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号