首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
冻土导热系数的测定对于研究冻土热物理性质、土体冻胀特性有着重要作用。本文将介绍低温冻土导热系数测定仪,包括其低温冷水域系统、制冷系统、温控系统、测温系统及数据采集系统的设计与研制。导热系数测量的关键在于温度的测量与控制,本装置利用比例积分微分(PID)调节原理,通过控制冷水域水箱内的加热管来调节冷液温度,保证其恒温精度要求。温度数据通过数据采集仪采集,并利用算术平均滤波法对结果进行处理。  相似文献   

2.
一、概述导热系数是材料重要热物理性能之一,是鉴别材料保温性能好坏的主要标志,因此准确测定该参数是十分必要的。本文介绍的常低温双平板导热系数测定仪是用于测量导热系数为0.029~1.16W/m·K范围内的建筑材料和保温材料的仪器。仪器热板温度范围为40℃~-15℃。经过两年多的试  相似文献   

3.
低温下导热系数测定对生物器官的低温保存、低温外科医学及数值模拟计算至关重要.在分析探针法测量原理的基础上,用探针法对低温下猪主动脉的导热系数进行了测量研究.实验表明探针在用甘油和蒸馏水进行标定后,可以方便准确地测量-90~-35℃温区下猪主动脉的导热系数.  相似文献   

4.
探针法测量低温下食品导热系数研究   总被引:3,自引:0,他引:3  
在分析了探针法测量原理的基础上,用探针法对低温下食品材料的导热系数进行了测量研究。实验表明探针在用甘油和蒸馏水进行标定后,可以方便准确地测量不同水分的土豆在25℃-50℃温度范围内的导热系数。  相似文献   

5.
根据准稳态平板法的热物性测试原理,建立了在温区-196℃~12℃的导热系数和比热的实验测试装置。通过实验测定了国产膨胀珍珠岩在平均温度为-190℃、-106℃、-12℃,5℃和12℃的低温及常温条件下的导热系数、比热和导温系数实验值。通过实验还发现在液氮温度条件下,空气冷凝对测试的明显影响。实验测试中采用精度较高的UJ-26电位差计代替自动平衡记录仪,提高了测试精度,使实验测定的数据更准确可靠。其原理误差不大于0.6%,且测试速度快,是用于低温绝热材料热物性测试的一种比较理想的测试方法。图16,表1,参考文献7。  相似文献   

6.
基于饱和冻土的三相组成和导热系数量纲定义,将冻土简化为由土柱、液态水、冰柱组成的混合物,进而建立了冻土导热系数的几何模型。考虑实际冻土中三相组成的含量随温度变化而不断变化的事实,给出了随温度变化的水柱和冰柱体积计算与演变规律。在此基础上,利用并联体系导热效果的叠加原理,给出了随温度变化的冻土导热系数计算模型。基于热流传递过程中并联与串联同时进行的耦合特性,建立了考虑固-液界面的导热系数计算模型。将预测值与瞬态探针法的实测结果和Johansen法的计算结果对比后发现,该类计算方法能有效模拟不同负温条件下冻土的导热系数,并且具有概念清晰、方法简单等特点。  相似文献   

7.
低温热流传感计适合用于-30℃~50℃范围内,精度为±4%,也适用在冷库中测试。本文叙述该仪器的制作、标定、误差分析,以及对冷库围护结构的热流量 q、导热系数λ、蓄热系数 S、热惰性指标 D 值等热工性能进行测试,在几个实测的冷库中,得到了良好的效果。  相似文献   

8.
以奈系中间相沥青为原料,在初始压力2.0~4.0MPa的范围内,利用甲苯作为超临界溶剂制备中间相沥青基泡沫,并经氧化炭化和石墨化获得了三维网状结构的泡沫炭,利用扫描电镜、x射线衍射、激光导热测定仪分析了泡沫碳的结构和导热性能,研究了泡沫炭结构与其导热性能的关系.结果表明,不同条件下所制备得到的泡沫炭泡孔结构和孔分布的不同对导热系数影响较大,在2350℃下石墨化后导热系数达到42(W/mK).  相似文献   

9.
本文阐述了测量金属材料低温导热系数的纵向热流稳态法的工作原理、试验装置及误差分析。用该装置对不锈钢的导热系数与温度(室温至-253℃)的关系进行了测定并与文献值对比。测试误差小于±5%。  相似文献   

10.
超高分子量聚乙烯基复合材料导热性能研究   总被引:1,自引:0,他引:1  
采用纳米铜作为子颗粒,利用颗粒复合化系统,以机械冲击的方法将纳米铜颗粒嵌入式包覆于超高分子量聚乙烯颗粒(UHMWPE)表面,利用热压成形技术制备导热型复合材料。采用导热系数测定仪测试其导热系数,分析纳米铜添加量对导热效果的影响。结果表明:在相同的实验条件下,当纳米铜添加质量分数为6.8%时,复合材料的导热系数达到了0.85 W/(m.K),比纯UHMWPE提高了124%。  相似文献   

11.
In this paper, we present a new method for inserting several triangulated surfaces into an existing tetrahedral mesh generated by the meccano method. The result is a conformal mesh where each inserted surface is approximated by a set of faces of the final tetrahedral mesh. First, the tetrahedral mesh is refined around the inserted surfaces to capture their geometric features. Second, each immersed surface is approximated by a set of faces from the tetrahedral mesh. Third, following a novel approach, the nodes of the approximated surfaces are mapped to the corresponding immersed surface. Fourth, we untangle and smooth the mesh by optimizing a regularized shape distortion measure for tetrahedral elements in which we move all the nodes of the mesh, restricting the movement of the edge and surface nodes along the corresponding entity they belong to. The refining process allows approximating the immersed surface for any initial meccano tetrahedral mesh. Moreover, the proposed projection method avoids computational expensive geometric projections. Finally, the applied simultaneous untangling and smoothing process delivers a high‐quality mesh and ensures that the immersed surfaces are interpolated. Several examples are presented to assess the properties of the proposed method.  相似文献   

12.
We associate a variety of innovations with the term "Industry 4.0". The pioneer of many 4.0 modifications forms the basisfor the trend towards the integrated di...  相似文献   

13.
A four-ball tester was used to evaluate the anti-wear performance of three kinds of organomolybdemun compounds in the engine oils, i. e., molybdenum dialkyldithiophosphate (MoDDP), molybdenum dialkyldithiocarbamate ( MoDTC), and sulphur and phosphorus freeorganomolybdeum (Molybdate). The results indicate that a low concentration of MoDDP doesn' t improve the anti-wear properties of the commercial engine oils, but a high concentration of MoDDP can obviously improve the anti-wear properties and the load-carrying capacity of the engine oils. MoDTC doesn' t improve the antiwear properties of the engine oils, but worsens the anti-wear properties of the oils. Signifi can timprove ment of frictional and wear characteristics is obtained with Molybdate added in the commercial engine oils and the formulated oils.  相似文献   

14.
15.
ABSTRACT

The production of ferrous metal increased during the Roman Late Republican period, Principate and Empire. The direct bloomery process was used to extract the metal from its ores using slag-tapping and slag-pit furnaces. The fuel was charcoal and an air blast was introduced by bellows-operated tuyères. Iron formed as a bloom, often as a spongy mass of metal, which contained impurities from the smelting process, including unreacted ore, fuel, slag and fragments from the furnace walls, while the metal was often inhomogeneous with varied carbon contents. Blooms were either smithed directly into bars or ingots or they were broken up, which also allowed the removal of gross impurities and a selection of pieces with similar properties to be made. These could then be forge-welded together and formed into characteristically shaped ingots. Making steel in the furnace seems to have been achieved: it depended on the ore and the furnace and conditions within it. Surface carburization was also carried out. Iron and steel were used extensively in construction and for tools and weapons. Fire welding was often used to add pieces of steel to make the edges of tools and weapons, which could be heat-treated by quenching to harden them.  相似文献   

16.
Standards are the basis for production enterprises to organize production, ex-factory inspection, trade (delivery) and technical exchanges, product certification, quality arbitration and supervision.……  相似文献   

17.
A flow calorimeter for enthalpy increment measurements on condensed gases is presented. A better knowledge of the properties of the liquefied natural gas is needed, and therefore a liquid loop has been designed for our flow calorimeter. The fluid loop in the calorimeter is designed in order to avoid the two-phase region, since two phases would give compositional disturbances in the measurements. The avoidance of the two-phase region is made possible by increasing the pressure of the test fluid after the measurement section, then heating the fluid at super-critical pressure past the critical point. Finally, the fluid is throttled to the low-pressure gas state at the inlet condition of the compressor that circulates the fluid. To perform the pressure increase, a new cryogenic pump has been designed. To evaluate the new equipment, measurements were taken on liquid ethane over the temperature range 146–256 K at pressure between 0.9 and 5.1 MPa.  相似文献   

18.
The end of 2007, over 200 unit products of more than 80 Chinese firms have passed the quality grade certification for liquor products. These products involve distilled spirits, beer, wine, yellow wine, fruit syrup wine and others, and cover over 80% of the national top-branded liquor products.……  相似文献   

19.
Surface characterization and microstructure studies are performed on chemical vapor deposited (CVD) tungsten coating. There is about 2 μm thickness diffusion layer of tungsten in the molybdenum substrate. The thermal shock test shows tungsten coating has good adhesion with molybdenum substrate, but the elements of oxygen and carbon in the tungsten coating have the bad affection to the adhesion. The result of high-temperature diffusion experiment is the diffusion rate from molybdenum substrate to tungsten coating is faster.  相似文献   

20.
Al2O3-ZrO2 nanocomposites were developed starting with the solgel process. Composite alumina-zirconia nanopowders were synthesized from metallorganic precursors (Aluminium secondary butoxide and zirconium Iso propoxide) using the solgel process. The parameters affecting the synthesis—solvent, concentration of precursor, R/H ratio (i.e., dilution of water in solvent)—were varied as also the temperature and pH. BET and TEM were used to measure nanosize. Diffuse reflectance spectroscopy and also qualitative optical absorption led to identical particle size estimate. The variation of process parameters was used to study the effect and interdependence of process parameters. Artificial Neural Networks was used to rigorously analyze the process. Although this led to confirmation of interdependence of parameters, the presence of a single overwhelming solvent variable was also established. Then the optimal process was used to synthesize more nanopowder. To produce bulk nanocomposite the nanopowders were sintered by varying the temperature and time period. The sintered lithoids were probed with a vickers hardness tester to measure elastic modulus, hardness, and fracture toughness. The results showed high elastic modulus, modest hardness, and very high fracture toughness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号