首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
固化压力对夹层结构力学性能的影响   总被引:5,自引:1,他引:5  
通过测试不同固化压力下的Nomex蜂窝夹层结构的力学性能,讨论了固化压力对蜂窝夹层结构性能的影响。结果表明,在固化压力0.2-0.5MPa下,夹层结构的平拉强度、平压强度、剪切强度无明显变化,而侧压强度与弯曲刚度则随压力的增大而发生明显的变化。  相似文献   

2.
《Polymer Composites》2017,38(8):1519-1528
A novel class of multiscale epoxy composites was developed containing carbon fibers (CFs) and multiwalled carbon nanotubes (MWCNTs) to explore their mutual effect on the mechanical performance of composites. The loading of CFs in composites was kept constant at ∼60 wt%, while the contents of MWCNTs were increased from 0.5 to 2.0 wt%. MWCNTs were functionalized through acid treatment before incorporating into epoxy matrix to promote dispersion quality. The developed composites were characterized microstructurally by scanning electron microscopy and mechanically by tensile, flexural, edgewise compression, and hardness tests. Homogeneous dispersion of MWCNTs was observed until their loading of 1.5 wt%, which enhanced the mechanical performance of composites. Hardness increased up to 47% while tensile, flexural, and edgewise compressive moduli increased to 40%, 16.3%, and 164%, respectively. Moreover, tensile, flexural, and edgewise compressive strengths showed rises of 45%, 15.2%, and 43%, respectively. The fracture strain increased in both the tensile and flexural tests while it decreased in edgewise compressive tests. Increasing the MWCNTs in composites to 2.0 wt% produced their agglomerates and reversed the rising trend in mechanical properties. POLYM. COMPOS., 38:1519–1528, 2017. © 2015 Society of Plastics Engineers  相似文献   

3.
In this work the moisture absorption capability, compressive properties, collapse modes of various types of composite sandwich structures are reported. The tested sandwich structures were constructed with varieties of hybridized skin materials and different compositions of the core materials. The moisture absorption, Flatwise compression and Edgewise compression tests are conducted for core as well as sandwich structures. Comparisons of results have been between the hybridized and non-hybridized sandwich structures. Two modes of collapse were noticed in the Edgewise compressive test, one of which being progressive end-crushing of the sandwich structure featured by significant crash energy absorption. This feature was highly desired for the parts of transportation vehicles. Microscopic analysis has been carried out to know the nature of failure under compressive loads. It has been observed that with increasing the debonding strength of the core–face interface, the failure mode changes from unstable collapse mode stable progressive crushing.  相似文献   

4.
Dual components of a self‐healing epoxy system comprising a low viscosity epoxy resin, along with its amine based curing agent, were separately encapsulated in a polyacrylonitrile shell via coaxial electrospinning. These nanofiber layers were then incorporated between sheets of carbon fiber fabric during the wet layup process followed by vacuum‐assisted resin transfer molding to fabricate self‐healing carbon fiber composites. Mechanical analysis of the nanofiber toughened composites demonstrated an 11% improvement in tensile strength, 19% increase in short beam shear strength, 14% greater flexural strength, and a 4% gain in impact energy absorption compared to the control composite without nanofibers. Three point bending tests affirmed the spontaneous, room temperature healing characteristics of the nanofiber containing composites, with a 96% recovery in flexural strength observed 24 h after the initial bending fracture, and a 102% recovery recorded 24 h after the successive bending fracture. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44956.  相似文献   

5.
高性能环氧树脂浇铸体研究   总被引:1,自引:0,他引:1  
采用多官能缩水甘油胺型环氧树脂为基体,甲基四氢苯酐(MeTHPA)为固化剂,BH-1为促进剂,制备了环氧树脂浇铸体。研究了该体系的凝胶时间,粘度随温度的变化和固化特性,确定了最佳固化工艺,并对浇铸体进行了弯曲和拉伸等力学性能测试。结果表明:体系最佳固化条件为80℃/2 h+100℃/1 h+120℃/1 h,然后在150℃下后处理2 h。浇注体弯曲强度和拉伸强度分别达到202 MPa和99.9 MPa,弯曲模量和拉伸模量分别达到4.26 GPa和3.48 GPa,玻璃化转变温度为160.85℃,具有较低的粘度、良好的浸渍性,耐热性和优异的力学性能。  相似文献   

6.
Foam sandwich composites were processed using cyanate ester‐based syntactic foam as core and carbon fabric‐cyanate ester composite as skin. They were processed by a one‐step compression‐molding technique. The mechanical performance of the sandwich composites was evaluated in terms of flatwise tensile strength (FTS), flatwise compressive strength, and edgewise compressive strength. The dependency of these properties on the core composition was investigated. FTS initially increased with the increase in resin content of the syntactic foam core. However, higher resin content in the core led to a diminution in FTS due to high void content. The flatwise compressive strength and edgewise compressive strength and the corresponding moduli values showed an increasing trend with increase in resin content of the core despite the presence of voids at high resin content. The failure modes of the composites under different loading conditions have been examined. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
以聚酰胺651及自制的M6640改性脂环胺为固化剂分别与环氧树脂E-51配制成管式陶瓷膜表面封端用胶粘剂,通过示差扫描分析法(DSC)、胶粘剂力学性能及腐蚀液的化学需氧量(COD)测试,考察了环氧固化剂种类、M6640改性脂环胺与环氧树脂E-51的质量比、固化条件对环氧胶粘剂的力学性能及耐碱性等的影响。结果表明,m(M6640改性脂环胺):m(环氧E-51)=50:100,固化条件25℃/24 h+80℃/4 h时,胶的剪切强度17.49 MPa、拉伸强度78.72 MPa、压缩强度105.32 MPa、弯曲强度120.58 MPa、硬度90.5 HD,Tg65.3℃,耐碱腐蚀,可满足陶瓷膜端面胶的应用要求。  相似文献   

8.
Epoxy resins used for reinforcement of bridges and buildings are explored in the light of both curing rates and mechanical properties when resins are contaminated with water in outdoor construction. The developed resin is composed of a conventional resin of bisphenol A diglycidyl ether and a hardener with a polyoxipropyldiamine base. Curing rates were obtained by time variation of the near infrared absorbance of amine groups in the hardener at various water contents. They obeyed the second‐order reaction law with respect to the hardener, of which the activation energy was 70 kJ mol−1. Water increased the reaction rate. Mechanical properties such as ultimate tensile strength, adhesive shear stress, and flexural strength were measured at various water contents for the developed epoxy resin and the commercially available low‐temperature epoxy resin. The developed cured resin shows not only higher mechanical strengths but also much less deterioration by water than the conventional cured resin. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 214–220, 2001  相似文献   

9.
Adhesion strength plays an important role in the mechanical properties of glued aluminum foam sandwich (AFS). This study aims to understand the effect of epoxy resin liquidity on the three-point bending performance of AFS. The liquidity of epoxy resin was improved by adding alcohol or acetone diluents. The adhesion strength of seven groups of epoxy resin added with different quantities of alcohol or acetone were tested through single-lap shear test and the mechanical properties of AFS glued by the seven adhesives were investigated through three-point bending test by using WDW-T100 electronic universal tensile testing machine. Results indicated that the liquidity influenced the properties of epoxy resin significantly and then affected the mechanical properties of glued AFS. The adhesion strength went down with the improvement of epoxy resin liquidity in general but when certain quantity of acetone was added into the epoxy resin, its plasticity improved and then the deformation mechanism of AFS changed, especially when 15% of acetone was added into the epoxy resin the energy absorption value of AFS improved by over 100%. This work can not only improve the comprehensive properties of AFS but may make it possible for AFS to be produced by machine because of the improvement of the epoxy resin liquidity.  相似文献   

10.
Thermoplastic nylon powder was added to naphthalene epoxy to serve as a stress release agent to reduce the stress resulting from the shrinkage during the cure of naphthalene epoxy. The purpose of this study was to explore the physical impact and effect on the forming object after adding nylon powder onto naphthalene epoxy. Mechanical properties were explored through the Izod impact test, the three‐point bending test, tensile test, and lap shear adhesion test. Thermal mechanical analysis (TMA) and dynamic mechanical analysis (DMA) were conducted to identify the coefficient of thermal expansion (CTE) and the glass transition temperature (Tg). The rate of water absorption was measured via a test of pressure cook test (PCT), and insulation resistance was assessed through the breakdown voltage experiment. The results indicate that the addition of nylon powder increases the fracture energy of the cured epoxy; however, mechanical properties (lap shear strength, flexural strength, tensile strength) decreased slightly. The TMA and DMA results showed that the CTE (α1) decreased when nylon was added and the heat resistance decreased a little. The water absorption rate test and PCT showed that the rate of water absorption increased to a small extent, whereas the breakdown voltage decreased slightly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3504–3509, 2006  相似文献   

11.
The mechanical response of integral-skin rigid polyurethane foam, with an average density of 300 to 700 kg/m3, to constant rate and creep loading was determined. Sandwich specimens were modeled by layers of a core material and two skins, whose secant moduli had been determined experimentally by separate tests and approximated by linear functions of the density. The effective rigidities of the sandwich in tension and flexure were calculated and compared favorably to experimental measurements. The sandwich structure improved the flexural rigidity of homogeneous foam by a factor of more than 2.20. Tensile creep tests of sandwich specimens at relatively low stress levels (up to about 38 percent of their strength) showed that the creep was nonlinear, but a single creep curve could represent creep of specimens of various densities, provided the relative load on them was the same. A limited number of flexural creep tests led to similar conclusions, but the creep rate was smaller than in tension. Results from torsion tests of core material, compressive tests of sandwich specimens, and tension and compression tests of nonskin rigid foam are included in this article.  相似文献   

12.
The mechanical behavior of a novel ceramic sandwich composite system was investigated. This system was comprised of a low-density, cellular alumina core bonded to dense alumina faceplates. The flexural strength and elastic properties of the core material alone were measured as a function of relative density. For the sandwich system, failure mechanisms and failure loads for a variety of core densities and face thicknesses were recorded. Initial failure mechanisms were observed to be exclusively core fracture but in a non-catastrophic manner. In order to successfully predict these failure loads with existing theory, Weibull statistics were incorporated into the analysis. This allowed flexural strengths measured independently on the core material to be scaled to those expected from the stress distribution in the sandwich core.  相似文献   

13.
This study aims to examine the morphology and mechanical properties (tensile, flexural, and compressive) of epoxy composites reinforced with epoxy date palm leaves (EDPL), epoxy date palm branch (EDPB), and epoxy/hardener date palm core shell (EDPC) fibers (particle size <1 μm depend on the date palm fibers). A three-step technique was used to obtain the composites. The EDPL composites showed a maximum tensile strength of 3.45 MPa, while the EDPB composites showed maximum compressive and flexural rigidity of 9.46 and 5.55 MPa, respectively, owing to the good compatibility of fiber-matrix bonding. In this work, epoxy composites reinforced with date palm fibers (DPF) leaves, branches, and core shell were recycled using a cost-effective and easily reproducible three-step technique. EDPC fibers fabricated with 64.65% weight carbon fibers content demonstrated improved tensile strengths and stiffness properties. The three samples of palm date composites revealed mechanical properties that could be used to trial these fibers for manufacturing purposes, and to exploit their extraordinary mechanical properties shown in current results.  相似文献   

14.
Adhesives that are stable in Li‐ion battery electrolytes are required to realize the potential of new battery designs that integrate structural elements with energy storage. Here, several polymers, commercial adhesives, and sealants were investigated to bond and seal a Li‐ion battery sandwich panel. Gravimetric electrolyte uptake measurements were compared with Hansen solubility parameters to predict long‐term durability of the materials exposed to battery electrolyte. The durability of adhesively bonded joints with an epoxy adhesive, which was selected as the lowest electrolyte uptake material, was examined using single lap shear strength tests and three‐point bending tests in a fabricated sandwich panel. The strength of the epoxy decreased after exposure to battery electrolyte due to solvent uptake in the bond. The addition of lithium hexafluorophosphate to the ethylene carbonate/dimethyl carbonate mixture severely decreased the strength with respect to the pure solvents. In device testing, the sandwich panel did not show any visible damage or leakage when loaded to above 1000 N during three‐point bending tests. Using sol extraction measurements and differential scanning calorimetry analyses, the optimized curing temperature for the epoxy adhesive ranged from 80 to 100 °C. At these temperatures, the cured adhesive had a highly crosslinked structure with low sol extraction. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46059.  相似文献   

15.
通过四点弯试验研究横向腹板增强复合材料夹层梁受弯性能,得到不同腹板间距、厚度对夹层梁弯曲破坏模式、刚度、极限承载力及延性性能的影响规律。结果表明:横向腹板能改变夹层梁的破坏模式,无腹板增强夹层梁破坏模式为芯材剪切破坏,横向腹板增强夹层梁破坏模式为多区格渐进破坏模式;相对于无腹板增强夹层梁,横向腹板能显著增强复合材料夹层梁的延性特性,最高达229%,腹板间距越小,夹层梁延性性能越好。  相似文献   

16.
In this investigation, the mechanical properties such as compression, impact, and flexural properties of graphene decorated with graphene quantum dots (GDGQD) epoxy composites with concentration of GDGQD ranging from 0.25 to 1 wt % were studied. Ideal mechanical properties are obtained by systematically varying the filler weight in the epoxy matrix. The morphological studies of GDGQD have been characterized using transmission electron microscope, X-ray diffraction, and Fourier transform infrared technique. The compression, impact, and flexural strengths were enhanced effectively by the GDGQD loading. With the addition of 0.75 wt % of GDGQD, the compressive strength, compressive modulus, flexural strength, and flexural modulus of the composites were improved by 22, 29, 31, and 63%, respectively. Also an improvement in impact strength of 102% for 0.75 wt % GDGQD epoxy sample was also obtained. Examination of fractured test specimens was performed with scanning electron microscope. The enhancement in the mechanical properties is due to the better stress transfer that is attributed by enhanced interfacial bonding between GDGQDs and the epoxy. Using the GDGQD aspect ratio in the two-dimensional randomly oriented filler modified Halpin–Tsai model, the theoretical flexural modulus for the GDGQD/epoxy composites has been established. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48680.  相似文献   

17.
新型环氧树脂增韧剂的合成与研究   总被引:8,自引:2,他引:8  
那兵 《粘接》2002,23(4):21-22
以聚醚和酸酐反应,再与环氧树脂反应,合成了一种新型的以环氧基封端的内增韧活性增韧剂,讨论了该增韧剂的固化特性和最佳掺合比例,在100份环氧树脂中加入10份这种增韧剂,环氧树脂固化物综合力学性能较好,剪切强度为23.6MPa,压缩强度达70.2Mpa。  相似文献   

18.
高沸醇木质素环氧树脂改性水泥砂浆的力学性能研究   总被引:1,自引:0,他引:1  
用高沸醇竹子木质素合成了木质素环氧树脂和木质素环氧树脂亲水衍生物。用红外光谱对产物进行了表征,并研究了不同聚/灰比和养护条件对高沸醇竹子木质素环氧树脂及其亲水衍生物改性水泥砂浆的力学性能的影响。结果表明:随着聚/灰比的增加,试样的抗折强度提高,而抗压强度降低,试样的韧性增强,当聚/灰比大于0.12时,抗折强度明显提高;混合养护条件所得试样的综合性能优于水养护条件。  相似文献   

19.
目前可用于水下粘接的EP(环氧树脂)胶粘剂用水下固化剂种类不多,主要是一些憎水类改性胺固化剂(如810和301P等)。以不同种类的水下固化剂作为试验对象,着重探讨了水下固化剂的本体黏度、相应水下EP胶粘剂的某些性能(如水下凝胶时间、水下拉伸剪切强度及水下压缩强度等)。研究结果表明:水下EP胶粘剂的适宜凝胶时间为1h左右;水膜隔离胶粘剂/被粘物的界面问题只影响拉伸剪切强度,而不影响压缩剪切强度,故水下固化剂的憎水性良好时,相应EP胶粘剂的压缩强度相对较高,但其钢/钢拉伸剪切强度会受到一定的影响;810和301P具有一定的憎水性,并且相应EP胶粘剂的水下凝胶时间均为1h左右,故不同黏度的810和301P复配可制得综合性能更好的水下EP胶粘剂。  相似文献   

20.
We applied an improved six-step phase-shifting method in digital photoelasticity to an adhesively bonded aluminum/epoxy/aluminum sandwich structure in order to study interlaminar shear failure behavior. Before and after three-point bending, a self-balanced thermal residual shear stress appeared on the interface because of the difference in thermal expansion coefficients between aluminum faces and epoxy core interlayer. At the beginning of loading, the shear stress in the core layer distributes continuously and forms shear bands tilting at a 45° direction. It then joins with the upper and bottom aluminum faces in order to realize the shear load transfer. As the bending load increases, the maximum interface shear stress occurs near the supports and a partially debonded region appears at the interface. The interfacial shear stress in the partially debonded region decreases rapidly until a shear failure occurs. A load–flexibility curve of the vibration-damping–type sandwich structure agrees well with the theoretical prediction of a laminated beam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号