首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过分析轮轨蠕滑率和自由轮对的蛇行运动方程,得到轮对横移和摇头的相互耦合关系式;基于多体动力学软件UM建立某型高速动车组拖车动力学模型,对4种车轮多边形工况进行接触斑内的蠕滑力分析,研究车轮多边形对轮轨蠕滑特性和轮对横移的影响。结果表明:车轮多边形的阶数和幅值对轮轨蠕滑特性有较大的影响,总体上轮轨蠕滑力随车轮多边形阶数和幅值的增大而增大,当左右两侧车轮出现不同阶数主导的车轮多边形时,左右两侧车轮的纵向蠕滑力相差较大;两侧车轮多边形幅值的不同会破坏轮对的对中能力,高速运行时会出现蛇行失稳现象,并且车辆的非线性临界速度会随车轮多边形磨损的加剧而降低。  相似文献   

2.
为研究高速列车谐波磨耗车轮滚动接触疲劳特性,建立谐波磨耗车轮高速轮轨滚动接触数值分析模型。该模型考虑了车辆系统的一、二系非线性悬挂力、轮轨非线性接触几何关系并考虑了钢轨振动及轮轨间的激励响应对接触蠕滑的影响。以CRH2型高速列车为研究对象,运用多体动力学软件UM参数化建立其动力学数值模型;对实测统计数据中最常见的1阶、6阶和11阶谐波磨耗以及波深0.1 mm和0.3 mm下车轮的蠕滑率/力进行分析;以不同阶数、波深车轮的蠕滑特性参数为疲劳模型的输入参数,研究谐波磨耗车轮的疲劳特性。结果表明:无谐波磨耗车轮处于弹性安定状态,1阶波深0.1 mm和0.3 mm车轮和6、11阶波深0.1 mm车轮都处于棘轮效应状态,6、11阶波深0.3mm处于塑性安定状态;低阶小波深车轮以疲劳为主,高阶大波深车轮以磨耗为主;与阶数相比,滚动接触疲劳、磨耗对波深的变化更为敏感,波深的增加会促进车轮蠕滑力/率的进一步快速增大,从而车轮的切向力迅速增大。  相似文献   

3.
建立了基于显式有限元的三维高速轮轨瞬态滚动接触有限元模型,于时域内分析制动车轮通过长度1m以下的短低黏着区时的瞬态滚动接触行为。模型采用了面面接触算法求解轮轨间滚动接触,考虑了轮轨真实三维几何和材料非线性。着重分析了低黏着区附近的轮轨力、应力、粘滑分布和摩擦功分布等的瞬态变化,结果显示:车轮进入低黏着区时,轮轨接触斑尺寸基本不变,但蠕滑力、接触斑内黏着区面积和摩擦功均显著降低,蠕滑率上升;待离开低黏着区并重新进入正常黏着钢轨后,显著升高的蠕滑率会使得蠕滑力和摩擦功显著高于滚入低黏着区之前的水平;低黏着区越长,发生磨损的可能性和严重程度越大;牵引与制动工况相比,蠕滑力/率方向相反,但黏着区的影响规律基本相同。  相似文献   

4.
利用ANSYS/LS-DYNA建立带车轮多边形的三维轮轨滚动接触疲劳裂纹扩展模型,将真实轮轨间瞬态滚滑和高频动力作用考虑在内,分析车轮多边形和连续钢轨裂纹造成的瞬态接触载荷对钢轨裂纹动态扩展行为的影响。速度250 km/h牵引工况的结果表明:零间隙多裂纹对法向轮轨力的影响甚微,但会造成切向轮轨力不可忽略的波动;车轮多边形会造成法向和切向轮轨力显著的周期性波动,如0. 1 mm波深23阶多边形会使得各裂纹面最大法向和切向接触力较圆顺工况分别增长19. 6%、34. 1%;任一裂纹面内法向和切向接触应力在接触斑滚过的0. 22 ms内发生了复杂的瞬态变化,进一步导致各裂纹的最大裂尖应力场强度因子的周期性波动,影响裂纹动态扩展行为;随着车轮多边形波深和阶数的增加,上述各种波动的幅度均会变大,加速裂纹扩展。  相似文献   

5.
随着铁路的高速化和重载化,车辆运行环境日益恶化,破坏的程度也越严重。应用有限元分析软件ANSYS建立了轮轨摩擦接触时的热弹性平面应变有限元模型,分析了不同蠕滑率、摩擦因数以及轴重对轮轨表层温升和应力的影响情况。结果表明:高速列车滚动运行时,温升不高,但也产生了可观的热应力;车轮滚动过程中承受冷热交替的载荷,很容易产生破坏;随着轴重、摩擦因数和蠕滑率的增大轮轨的摩擦热效应越明显。摩擦生热的计算分析对于揭示热损伤机理有很大的指导意义。  相似文献   

6.
曲线钢轨初始波磨形成的机理分析   总被引:3,自引:0,他引:3  
利用数值方法分析钢轨离散支撑引发曲线钢轨初始波浪形磨损形成的机理.建立车辆轨道耦合动力学模型、轮轨滚动接触理论模型和轮轨界面材料摩擦磨损模型为一体的钢轨磨耗型波浪形磨损计算模型.考虑半个车辆模型和有限计算长度的轨道模型,利用Hertz非线性接触弹簧和沈志云-Hydrick-Elkins非线性蠕滑理论耦合车辆和轨道的计算模型来计算轮轨的法向载荷和切向载荷.通过车辆过曲线动力学分析,确定轮轨的瞬时接触位置、法向载荷、蠕滑率等.根据修改的Kalker三维滚动接触理论计算轮轨滚动接触力学行为,再利用轮轨材料摩擦磨损模型计算钢轨的磨损量.对曲线两端的缓和曲线和圆曲线的初始波磨形成过程作详细分析,并对波动频率也作了调查.数值结果显示,同一个转向架4个车轮引起的磨损波长和波深是不同的;不同曲线位置初始波磨的波深和波长也有区别;波磨的频率和轮轨接触振动密切相关;波磨的频率不仅包含轨枕的通过频率,也包含轨道被激发的更高振动频率.  相似文献   

7.
针对车轮多边形磨耗不同状态下对车辆动力学影响展开研究,建立轮轨柔性某地铁B型车辆刚柔耦合动力学模型,计算车轮多边形阶数和谐波幅值变化对轮轨垂向力、轮轨振动、运行平稳性等车辆动力学性能的影响。结果表明:阶数和谐波幅值在速度增大时轮轨垂向力逐渐增大;阶数14阶、18阶是轮对和轴箱振动加速度随谐波幅值变化产生振动的主要诱因;动力学指标中轮重减载率在18阶、0.04 mm时对其影响最大;车轮多边形使钢轨垂向动位移和振动加速度增大,谐波幅值对钢轨振动特性更有影响。建议考虑制造轮轨柔性,18阶、0.04 mm时对轮轨璇修打磨,以提高动力学性能和行车安全性。  相似文献   

8.
在NENE-2型磨损试验机上利用往复滚动试验装置研究了不同制动状态下车轮钢的滚动摩擦磨损特性。结果表明:不同滚滑状态下的切向摩擦力是变化的,随制动力的增加,滚动摩擦副对应的摩擦因数和摩擦阻力相应增大;平面试样的表面磨痕形貌由于切向摩擦力的变化而明显不同;随切向摩擦力的增大滚动磨损机制亦发生改变,从磨粒磨损逐渐转变为粘着磨损,磨损加剧且磨痕深度变大。  相似文献   

9.
列车车轮多边形磨耗会显著加大轮轨相互作用力和转向架关键部件振动幅度,恶化车辆系统和轨道部件的工作环境,严重时将会威胁到行车安全。基于三维车辆-轨道耦合动力学模型,用谐波叠加法模拟车轮多边形磨耗,作为车辆轨道耦合动态行为分析时的激励输入,计算车轮多边形磨耗阶次、车辆运行速度和运行里程对轮轨力的影响,并分析车轮多边形磨耗与轮轨力之间的相位关系;建立转向架系统高频振动全有限元模型,以时域轮轨力作为模型输入,分析车轮多边形磨耗参数对转向架轴箱、构架振动响应的影响。计算结果显示,随着列车运行速度、车轮多边形磨耗幅值和阶数的提高,轮轨垂向作用力波动范围和转向架振动响应均会显著增大。所得的结果可为高速列车车轮多边形形成的机理和抑制措施的进一步研究提供参考和指导。  相似文献   

10.
利用低温环境轮轨磨损模拟试验装置,研究了高速铁路车轮材料在室温及低温环境下的滚动接触疲劳损伤行为。结果表明:低湿度的低温环境导致车轮材料磨损率、塑性变形及疲劳损伤较室温下明显加重。随试验温度的降低,轮轨摩擦因数、磨损率及表面硬度均呈现先急剧上升后轻微下降趋势。室温工况下磨痕表面有严重的犁沟现象,而低温工况下车轮试样表面以疲劳裂纹及剥落损伤为主。随着温度的降低,磨损形式由氧化磨损、磨粒磨损逐渐向疲劳及粘着磨损转变。车轮材料裂纹主要沿较软的铁素体线扩展,室温下剖面损伤较轻微。低温工况下由于车轮材料发生脆化,珠光体呈现不同于室温下的形貌及分布特性。在低温下,表层裂纹扩展角度及次表层裂纹长度增加,同时表层裂纹易于汇合并产生分支。  相似文献   

11.
轮轨关系研究中的力学问题   总被引:6,自引:0,他引:6  
简单论述世界铁路发展状况和铁路交通运输的优越性。详细论述轮轨关系的研究问题,其研究包含轮轨滚动接触作用和稳定性问题、轮轨粘着和强度、接触表面磨损和滚动接触疲劳破坏、轮轨噪声、轮轨蠕滑率/力理论和轮轨三维弹塑性滚动接触问题。在这些问题研究中,蕴涵十分复杂的力学和强度问题。文中就这方面的研究现状和存在问题以及问题研究的难点进行讨论,并分析今后可能的研究方向。  相似文献   

12.
用JD-1型轮轨模拟试验机和赫兹模拟准则研究了车轮转速对车轮滚动磨损性能的影响;用SEM、EDS和硬度计等分析了车轮磨损表面形貌与硬度变化情况。结果表明:随车轮转速的增大,车轮磨损量呈现先减小后增大的趋势,滚动摩擦过程中致密氧化膜的形成与车轮磨损量的变化有直接的关系;随着转速的增大,车轮的磨损机制由磨粒磨损向疲劳和氧化磨损转变。  相似文献   

13.
为探究水润滑条件下转速对车轮钢滚动接触疲劳和磨损性能的影响,利用滚动接触摩擦磨损试验测试不同转速下车轮试样的剥离寿命、摩擦因数和磨损率,并结合磨损形貌和裂纹扩展形貌观察,对比分析不同转速下摩擦磨损和剥离寿命的影响因素。结果表明:随转速提高,车轮材料氧化程度加剧,导致摩擦因数逐渐增加;当转速由250 r/min增至500 r/min时,摩擦因数增幅较小,应变速率增加导致磨损率下降,当转速由500 r/min增至1000 r/min时,摩擦因数急剧增加,导致材料磨损率增加;随转速提高,剖面塑性流动层厚度、裂纹扩展角度、裂纹分叉深度和最大扩展深度均呈现减小趋势。转速增加带来的摩擦因数的增加,一方面缩短裂纹萌生寿命,另一方面减小了裂纹发生向上转折的深度,最终导致滚动接触疲劳寿命随转速的增加而减小。  相似文献   

14.
以CRH3型高速列车头车与标准CHN60型轨道为研究对象,利用动力学软件RecurDyn建立车辆-轨道耦合动力学模型;采用弹簧阻尼模型定义轮轨接触关系,跟踪检测服役列车不同运行里程下的车轮粗糙度,根据相关文献的轮轨接触刚度计算结果,对高速轮轨滚动接触动力学性能进行研究,并取该头车的后转向架二位轮对处结果进行数据分析。计算结果表明:随着高速列车运行里程的增加,车轮表面粗糙度减小,使得轮轨接触刚度增大;轮轨横向力随着运行里程的增加先减小后增大,其频率主要分布在10 Hz以下的低频段;轮轨垂向力随着运行里程的增加而增加,并在5、10、28 Hz附近有比较明显的主频率段;轮轨纵向力主要由切向蠕滑力的纵向分量构成,与轮轨垂向力在时域分布和频域分布上均非常相似。  相似文献   

15.
利用MJP-30A滚动磨损试验机研究U75V钢轨在不同蠕滑率下的磨损与损伤行为,探讨钢轨磨损率随蠕滑率的转变规律。结果表明:U75V钢轨磨损率随蠕滑率的增加呈现"台阶式"上升规律;根据Tγ/A-磨损率变化曲线,可将U75V钢轨材料磨损划分为三个区域:轻微磨损区、严重磨损区和灾难性磨损区。不同蠕滑率下U75V钢轨的磨损与损伤机制明显不同;当蠕滑率小于3%时钢轨材料主要磨损形式为氧化磨损与轻微疲劳磨损,当蠕滑率为6%~12%时钢轨材料主要磨损形式为轻微黏着磨损,当蠕滑率为18%~25%时钢轨材料主要磨损形式为严重黏着磨损;随蠕滑率增加,钢轨材料塑性变形层厚度、疲劳裂纹的深度和角度均呈先增加后减小的趋势,当蠕滑率为12%~18%时、塑性变形层厚度、疲劳裂纹的深度和角度达到最大。  相似文献   

16.
在赫兹模拟准则前提下,使用轮轨模拟试验机研究不同轴重下PD3淬火钢轨在重载和轻载工况下的滚动摩擦磨损性能。利用韦氏硬度仪、光学显微镜、SEM等分析试样试验后的硬度变化、塑性变形以及微观组织损伤等。试验结果表明:随着轴重的增加,试样磨损量大幅度增加,材料表面塑性变形更严重;试验后试样表面硬度均显著提高,且重载工况下产生了塑性变形型波磨,波峰及波谷处的硬度均高于轻载工况;重载下试样所受应力较大,内部组织破坏严重,裂纹扩展以产生二次甚至多次裂纹为主要形式,其中贯穿到表面的裂纹最终导致表面材料剥离掉落,而轻载下裂纹规整且多数以一根主裂纹形式沿着塑性变形流动方向扩展。轻载和重载下试样损伤形式均主要为滚动接触疲劳。  相似文献   

17.
车轮多边形是高速列车运行过程中常见的磨耗现象,该现象使轮轨作用力增大,齿轮箱持续异常振动,并会影响其疲劳寿命。为研究高速列车车轮多边形对齿轮箱疲劳寿命的影响,建立了含有齿轮箱支撑轴承的驱动系统和柔性齿轮箱的刚柔耦合整车动力学模型,采用数值仿真分析方法,通过分析不同车轮多边形幅值下轮轨垂向力和齿轮箱垂向振动加速度确定极端工况,对该工况下的齿轮箱进行应力分析并确定危险点,进而分析这些点的疲劳寿命。研究发现:列车在350 km/h三阶0.1 mm车轮多边形极端工况时,轮轨垂向力及齿轮箱垂向加速度明显增大,齿轮箱剧烈振动,此时齿轮箱多处出现应力集中,存在多个危险点。其中齿轮箱输出轴轴承端支撑筋处应力最大,该危险点疲劳寿命只能达到256万km,远小于1200万km的正常寿命。因此,在高速列车实际运营中要高度重视车轮多边形对齿轮箱疲劳寿命带来的影响,可通过车轮镟修来降低车轮多边形对齿轮箱疲劳寿命的影响。  相似文献   

18.
针对地铁轮轨的表面硬化问题,为了进一步降低轮轨的磨耗,通过对某实际运营线路中的钢轨和两种不同车轮钢的摩擦磨损进行实验研究,探讨了材料表面硬化对轮轨耐磨性的影响规律。首先,采用了赫兹模拟准则,对典型工况下地铁车辆的轮轨接触情况进行了模拟;然后,选取了某地铁线路现役的轮轨材料作为研究对象,并确定了其垂向载荷、运转速度和轮轨试样尺寸等实验参数;最后,采用GPM-60摩擦磨损实验机搭建了测试平台,进行了轮轨接触模拟实验,分析了表面硬化与地铁轮轨磨耗性能之间的规律。研究结果表明:车轮试样的磨耗率随表面硬化程度提高而下降,初始硬度较高的微合金化地铁车轮钢表现出更高的表面硬化程度和更好的耐磨性,相较于CL60钢,其磨耗率可降低35.1%,与其匹配的钢轨磨耗率可提高7.8%,轮轨总磨耗率可降低1.6%;建议在运营初期,对轮轨接触面进行喷丸强化处理,预先提高其表层硬度,以减少轮轨磨合阶段时间和初期磨耗量。  相似文献   

19.
车轮磨耗计算模型及其数值方法   总被引:6,自引:1,他引:5  
综述国内外车轮磨耗理论模型及其数值方法,提出基于车辆轨道垂、横向耦合动力学、轮轨滚动接触力学和材料摩擦磨耗模型为一体的车轮磨损计算模型, 并发展相应的数值方法。模型中车辆结构和钢轨下部结构被简化成等效质量、弹簧和阻尼系统, 而钢轨用Euler 梁代替, 并考虑它的垂向、横向弯曲变形和扭转变形。利用修改的KALKER三维弹性体非Hertz 滚动接触理论和相应的数值方法计算轮轨蠕滑力和滑动量等参量;根据Archard材料磨损模型计算车轮的磨耗深度。利用该模型和相应的数值方法分析不同曲线半径情况下车轮的磨损情况,结果表明该模型可以较好地模拟车轮磨损的演化过程。给出列车通过曲线半径为350 m时车轮的磨损情况。数值结果表明,每个转向架下前轮对比后轮对磨耗严重,外轨上的车轮比内轨上的车轮磨耗严重。  相似文献   

20.
为研究货车车轮扁疤状态下的动力学表征,为车轮扁疤的间接识别提供理论支撑,建立了配置有转K6转向架的C80铁路货车动力学模型,并推导了扁疤对钢轨的垂向冲击力公式及振动加速度公式,研究了车轮扁疤故障状态下的车轮轮轨力响应、承载鞍振动响应情况,并分析了故障状态下车轮扁疤长度与轮轨垂向力对应关系,为扁疤的故障检测和识别提供基础支撑.结果表明:扁疤故障状态下,轮轨垂向力与扁疤长度呈正比例关系,且轮轨力最大值随车辆运行速度增大而呈现先增大后缓慢减小的趋势,承载鞍振动加速度变化趋势与轮轨垂向力基本保持一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号