首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
不同碳源掺杂磷酸亚铁锂正极材料电化学性能研究   总被引:1,自引:1,他引:0  
采用液相共沉淀-固相焙烧合成了橄榄石型磷酸亚铁锂(LiFePO4)正极材料,用X射线衍射(XRD)、扫描电镜(SEM)和恒流充放电测试等方法对产物物相结构、表观形貌和电化学性能进行了表征和分析.纯相材料首次放电比容量达到90.6 mA·h/g,循环5次后,放电比容量为75.94 mA·h/g.为解决首次放电比容量低下以及材料循环性能差的问题,采取不同碳源掺杂对材料进行改进,最后得到LiFePO4/C复合正极材料,0.05 C首次放电比容量达到158.8 mA·h/g.  相似文献   

2.
以酚醛树脂为炭前驱体、水热法合成的Fe_3O_4纳米微球为核,经研磨、干燥、炭化制备Fe_3O_4@C纳米核壳型微球。结果表明,包覆后的Fe_3O_4@C微球尺寸均匀且无团聚现象。碳包覆量影响着Fe_3O_4@C锂电池负极材料的电化学性能。20%为最佳包覆量,其首次放电比容量为984 mA·h/g,100次循环后放电比容量保持在413 mA·h/g。  相似文献   

3.
以单分散法制备的聚甲基丙烯酸甲酯(PMMA)微球为模板,合成三维多孔(3DOM)LiMnPO_4锂电池正极材料,制备的材料为橄榄石型结构。N_2吸附-脱附分析显示,3DOM LiMnPO_4比表面积较大,为34.63 m~2/g。电化学性能测试表明,首次比容量接近于120 m A·h/g,循环充放电60次时仍保持较好的稳定性。模板法获得的LiMnPO_4呈多孔结构,有利于降低离子或电荷迁移到电解液或电极表面的阻力,从而降低了电极表面的极化,有利于锂离子脱嵌,进而提高充放电的循环稳定性。  相似文献   

4.
以FePO_4·2H_2O、LiOH·H_2O、淀粉为原料,采用湿法球磨-喷雾干燥-碳热还原法制备出纳/微结构LiFePO_4/C复合材料,通过XRD、SEM测定了LiFePO_4/C复合材料的形态结构,考察了焙烧温度、焙烧时间对纳/微结构LiFePO_4/C形态和电化学性能的影响。结果表明:最佳的焙烧温度为650℃、焙烧时间为8.5 h,该条件下所得的LiFePO_4/C复合材料10 C放电比容量为123.0 mA·h/g,100次循环后放电比容量的保持率接近100%。  相似文献   

5.
以CH3COOLi、FeC2O4、纳米SiO2为原料,葡萄糖为碳源,超导碳为微波耦合剂,采用微波加热法合成了Li2FeSiO4/C材料。考察了不同微波时间对材料室温下电化学性能的影响,并通过X射线衍射、扫描电子显微镜、透射电子显微镜和X射线能谱对样品的晶型结构、表面形貌和组成进行表征分析。结果表明,微波合成法可以快速制备Li2FeSiO4/C材料,微波时间16min所得样品具有最好的电化学性能。室温下以C/16倍率进行充放电测试,放电容量为111.5mA·h/g;以0.2C进行充放电循环,首次放电容量为96.7mA·h/g,19次循环后容量仍有95.2mA·h/g。  相似文献   

6.
以二氧化锰、氧化镍和碳酸锂为原料,采用二次焙烧工艺制备了尖晶石型镍锰酸锂(LiNi0.5Mn1.5O4)正极材料。采用X射线衍射(XRD)、扫描电镜(SEM)、交流阻抗测试(EIS)和充放电测试对LiNi0.5Mn1.5O4正极材料进行了表征。结果表明,合成的材料晶体结构完整,形貌规则,并且表现出优异的电化学性能,其0.2 C首次放电容量为134.6 mA·h/g,5 C首次放电容量为112.9 mA·h/g,5 C循环34次后容量保持率为103.3%。  相似文献   

7.
为了提高TiO_2负极材料的电化学性能,采用球磨-超声-水热法制备了TiO_2/C/BP复合负极材料,测定了材料的循环放电比容量、倍率性能、循环伏安曲线和交流阻抗。结果表明,二氧化钛掺杂石墨、黑磷后,二氧化钛晶型不受影响,TiO_2/C/BP复合材料颗粒分散性得到改善、交流阻抗减小、导电性明显增强,与纯TiO_2相比,电流密度为100 mA/g,首圈放电比容量由320 mA·h/g提高到502 mA·h/g,第3圈放电比容量由175 mA·h/g提高到335 mA·h/g,经过100次循环后,纯TiO_2的放电比容量降至98 mA·h/g,而TiO_2/C/BP的放电比容量仍维持在255 mA·h/g,放电比容量保持率明显提高,库伦效率的稳定性也得到显著提高。  相似文献   

8.
采用微波水热法和水热法制备锂离子电池负极材料Li4Ti5O12,比较了合成方法对Li4Ti5O12电化学性能的影响,考察了其结构和形貌及电化学性能.结果表明,两种方法均合成了尖晶石结构的Li4Ti5O12,微波水热法合成的样品电化学性能较好,颗粒尺寸为200~300 nm,分布均匀,比表面积较大,在1 C的放电条件下,首次放电比容量为151.33 mA·h/g,97次循环后放电比容量为140.94 mA·h/g,保持率为93.14%,且电化学阻抗较小.  相似文献   

9.
以水热法所制碳球为模板,采用溶胶?凝胶法制备LiMn2O4空心多孔颗粒(PLMO),研究了煅烧温度和碳球加入量对样品相演化和表面形貌的影响,比较了PLMO和未加入碳球的LiMn2O4 (LMO)的电化学性能. 结果表明,650?750℃煅烧12 h可制得蜂窝状孔型结构的PLMO;在放电倍率0.5C下循环50次,PLMO的放电容量从126 mA?h/g降至111 mA?h/g,均高于相应LMO的放电容量. 在5C放电倍率下,PLMO的首次放电容量可达89 mA?h/g,较LMO提高约39%.  相似文献   

10.
共沉淀法合成磷酸铁锂掺碳复合正极材料   总被引:2,自引:0,他引:2  
采用共沉淀法合成了纯相橄榄石型磷酸铁锂(LiFePO4)和磷酸铁锂掺碳(LiFePO4/C)复合正极材料.利用X射线衍射(XRD)、原子吸收(AAS)、扫描电镜(SEM)、红外吸收(FT-IR)、振实密度测定等方法对其进行表征,并组装成电池研究其电化学性能.结果表明:HFePO4和LiFePO4/C具有单一的橄榄石型晶体结构,前者的振实密度可达1.58 g/cm2,LiFePO4/C振实密度有所降低,但充放电平台非常平稳.与纯相LiFePO4相比,LiFePO4/C具有更高的放电比容量和循环性能,室温下以0.05 C和0.1 C倍率电流充放电,首次放电比容量达到158.1,150.0 mA·k/g.充放电循环20次后放电比容量仍保持在154.2,137.2 mA·h/g.  相似文献   

11.
以纳米TiO2和LiNO3为原料,尿素为燃料,燃烧法合成了锂离子电池负极材料Li4Ti5O12. 利用XRD、SEM和恒电流充放电、循环伏安和交流阻抗对其进行表征. 结果表明,预设炉温850℃,尿素与锂摩尔比1,焙烧8 h,制备得到平均粒径小于500 nm、粒度分布均匀的纯相尖晶石型结构Li4Ti5O12,并具有良好的电化学性能,具有1.5 V充放电平台,在0.1 C倍率下(1 C=170 mA·h/g),其首次充放电容量达到168 mA·h/g,经过100次循环后放电比容量仍有162 mA·h/g,容量保持率96.4%.  相似文献   

12.
以醋酸锂、磷酸、七水合硫酸亚铁为原料,聚乙二醇为分散剂,通过一步水热法制备得到中空八面体LiFePO_4锂离子电池正极材料。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试仪对样品晶型、形电化学性能进行了表征测试。研究结果表明,在2.5~4.2 V电压范围内,以0.1 C(17 mA/g)倍率进行充放电,样品首次放电比容量为129.6 mA·h/g;0.2、0.5、1、2和5 C的充放电倍率时,首次放电比容量分别达到123.6、119.7、114.1、99.5g和90.6 mA·h/g。10 C的充放电倍率时首次放电比容量为84.3 mA·h/g,说明中空八面体LiFePO_4在高倍率下表现出优异的电化学性能。  相似文献   

13.
采用液相无焰燃烧法在500℃反应1 h、600℃二次焙烧不同时间制备锂、镍共掺杂尖晶石型Li1.05Ni0.02Mn1.93O4正极材料。焙烧不同时间制备的样品均呈现出LiMn2O4的尖晶石晶体结构且均为单相,没有任何杂质相出现。延长焙烧时间有利于晶粒发育,提高合成材料的结晶性。二次焙烧9 h合成的正极材料具有良好的循环稳定性和倍率性能,在1 C倍率的首次放电容量为102.1 mA·h/g, 500次循环后具有69.15%的容量保持率;在5 C释放出91.9 mA·h/g容量;10 C循环1 000次的容量保持率为76.35%。具有较好的循环可逆性、较小的电荷转移阻抗和较低的表观活化能。适量的锂、镍共掺杂可有效提高LiMn2O4的结构稳定性、抑制Jahn-Teller效应和缓解锰的溶解,使其具有更高的电化学性能。  相似文献   

14.
液相法合成高容量LiFePO4/C复合正极材料   总被引:7,自引:1,他引:7  
采用液相共沉淀法合成了纯相橄榄石型LiFePO4和LiFePO4/C复合正极材料。利用原子吸收(AAS)、X射线衍射(XRD)、扫描电镜(SEM)、振实密度测定等方法对其进行表征,并组装成电池研究其电化学性能。结果表明:LiFePO4和LiFePO4/C都具有单一的橄榄石型晶体结构,且前者的振实密度可达1.67 g/cm2,掺碳后制成的LiFePO4/C振实密度有所降低,但充放电平台非常平稳。与纯相LiFePO4相比,LiFePO4/C具有更高的放电比容量和循环性能,室温下以0.2 mA/cm2和0.4 mA/cm2电流密度充放电,首次放电比容量分别达到158.1 mA.h/g、150.0 mA.h/g。充放电循环20次后放电比容量仍分别保持在154.2 mA.h/g,137.2 mA.h/g。  相似文献   

15.
以Na_2SnO_3·4H_2O为原料,CO(NH_2)_2为沉淀剂,采用水热法制备了SnO_2纳米球。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、比表面积测试仪(BET)及电化学测试仪测试材料的结构、形貌、比表面积及电化学性能。结果表明,所制备的纳米SnO_2材料具有规整的球体形貌,颗粒分散均匀,半径约为400nm,呈典型的金红石相结构。在电压为0.01~3V、电流密度200mA/g的条件下进行充放电测试,首次放电比容量为2206.6mA·h/g,50次循环后,放电比容量保持在440mA·h/g,具有较好的循环性能。  相似文献   

16.
采用同相法制备正极材料LiNi1/3Co1/3Mn1/3O2,用X射线衍射仪(XRD)、扫描电子显微镜(SEM)/透射电镜(TEM)分析材料的结构和形貌特征,用LAND电池测试系统测试材料的电化学性能(充放电容量和循环性能等).以LiOH·H2O,H2C2O4·2H2O,Ni(AC)2·4H2O,Co(AC)2·4H2O和Mn(AC)2·4H2O为原料,采用固相法在不同煅烧温度和煅烧时间下制备的层状正极材料LiNi1/3Co1/3Mn1/3O2具有典型的α-NaFeO2型层状结构特征,晶型结构完整.电化学性能测试结果表明,在850℃下保温15 h合成的正极材料电化学性能最优,在电流密度为120 mA/g、充放电电压在2.75~4.5 V时,经30次循环后放电比容量为163.5 mA·h/g,容量保持率为94%;50次循环后为157.2 mA·h/g,容量保持率为90.8%.  相似文献   

17.
以Zn(NO3)2·6H2O、Mn(AcO)2·4H2O和碳纳米管(CNT)为原料,经过表面活性剂辅助溶剂热反应合成了CNT包覆ZnMn2O4/Mn2O3(ZMO/MO)复合材料,通过XRD和SEM对材料的结构和形貌进行表征.结果表明,CNT均匀包覆在微球状ZMO/MO复合物的表面.在0.1 A/g电流密度下,CNT包覆量为10%(即CNT质量占复合微球质量的百分数,下同)的ZMO/MO/10CNT复合材料放电比容量为112.8 mA·h/g,并且在300次循环后仍能保持在49.6 mA·h/g的可逆比容量.在电流密度为0.1、0.2、0.4、0.8、1.2、2.0 A/g时,其放电比容量分别为126.2、124.4、115.4、94.2、57.3和45.0 mA·h/g.采用循环伏安曲线和电化学阻抗探究了电极的动力学特性,两相复合提高了Zn2+扩散速率,CNT的包覆改善了材料的电荷传递.  相似文献   

18.
改进固相法优化合成碳包覆磷酸亚铁锂正极材料   总被引:1,自引:0,他引:1  
锂铁比、葡萄糖加入量、焙烧温度、焙烧时间是影响LiFePO4正极材料电化学性能的4个重要因素。本文使用改进的固相法设计出一个四因素三水平的正交实验,对LiFePO4/C正极材料进行了优化合成,探讨了其优化合成条件,并合成出具有优良电化学性能的LiFePO4/C正极材料。使用XRD、SEM对合成产物进行结构分析;使用循环伏安、交流阻抗、放电比容量等对正极材料的电化学性能进行分析。此方法不使用球磨机,有利于工业化生产。室温下0.2 C倍率首次放电比容量为133.2 mAh/g,1.0 C倍率容量为112.5 mAh/g;30次循环活化后,0.2 C倍率容量稳定保持在133.1 mAh/g左右,1.0 C倍率容量则下降至106.8 mAh/g。  相似文献   

19.
采用湿法球磨-喷雾干燥-固相反应法制备多孔中空LiMn_(0.85)Fe_(0.15)PO_4/C微球,并用比表面积-孔径分析、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电镜(TEM)、场发射扫描电镜(FE-SEM)、交流阻抗(EIS)、循环伏安(CV)、拉曼光谱(Raman)、恒流充放电等技术研究了湿法球磨过程中循环流速对LiMn_(0.85)Fe_(0.15)PO_4/C的结构、形貌和电化学性能的影响。结果表明:LiMn_(0.85)Fe_(0.15)PO_4/C的一次颗粒粒径随循环流速的增加先减小后增大,在循环流速为1.5 L/min下制备的LiMn_(0.85)Fe_(0.15)PO_4/C复合材料表现出较好的电化学性能,材料为多孔中空微球,由粒径为40~100 nm的一次颗粒和平均孔径为21.42 nm的介孔组成,微球粒径为2~15μm,材料在1C倍率下的放电比容量为135 m A·h/g,且循环50次后无衰减,表现出了良好的电化学性能。  相似文献   

20.
陈修栋  柯江南  严平  刘金杭  汪亚威  杨志鹏 《精细化工》2021,38(11):2354-2358,2376
以偏苯三甲酸和Co(NO3)2?6H2O为原料,通过溶剂热法合成了一种钴基金属有机聚合物(Co-MOP).然后对Co-MOP进行高温(500、600、700℃)煅烧得到Co-MOP衍生材料(Co-MOP-500、Co-MOP-600、Co-MOP-700).采用XRD、SEM、TEM、XPS、BET对Co-MOP及其衍生材料进行了结构和形貌表征.将Co-MOP衍生材料用作锂离子电池负极材料,并进行了电化学性能测试.结果表明,Co-MOP衍生材料均为Co3O4,Co-MOP-600形成了较为稳定结构的多孔球,较好地保持了Co-MOP的形貌,其比表面积为19.9 m2/g.Co-MOP-600具有优异的电化学性能.在100 mA/g电流密度下,Co-MOP-600电极的首圈放电比容量达到1818.5 mA·h/g,循环100圈后其比容量还能维持在1308.5 mA·h/g,Co-MOP-600稳定的多孔球形结构为锂离子的储存提供了更多的活性位点和运输通道.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号