首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an adaptive super-twisting sliding mode control (STC) along with double-loop control for voltage tracking performance of three-phase differential boost inverter and DC-link capacitor voltage regulation in grid-connected PV system. The effectiveness of the proposed control strategies are demonstrated under realistic scenarios such as variations in solar insolation, load power demand, grid voltage, and transition from grid-connected to standalone mode etc. Additional supplementary power quality control functions such as harmonic compensation, and reactive power management are also investigated with the proposed control strategy. The results are compared with conventional proportional-integral controller, and PWM sliding mode controller. The system performance is evaluated in simulation and in real-time.  相似文献   

2.
This paper proposes an improved hierarchical control strategy consists of a primary and a secondary layer for a three-phase 4-wire microgrid under unbalanced and nonlinear load conditions. The primary layer is comprised of a multi-loop control strategy to provide balanced output voltages, a harmonic compensator to reduce the total harmonic distortion (THD), and a droop-based scheme to achieve an accurate power sharing. At the secondary control layer, a reactive power compensator and a frequency restoration loop are designed to improve the accuracy of reactive power sharing and to restore the frequency deviation, respectively. Simulation studies and practical performance are carried out using the DIgSILENT Power Factory software and laboratory testing, to verify the effectiveness of the control strategy in both islanded and grid-connected mode. Zero reactive power sharing error and zero frequency steady-state error have given this control strategy an edge over the conventional control scheme. Furthermore, the proposed scheme presented outstanding voltage control performance, such as fast transient response and low voltage THD. The superiority of the proposed control strategy over the conventional filter-based control scheme is confirmed by the 2 line cycles decrease in the transient response. Additionally, the voltage THDs in islanded mode are reduced from above 5.1% to lower than 2.7% with the proposed control strategy under nonlinear load conditions. The current THD is also reduced from above 21% to lower than 2.4% in the connection point of the microgrid with the offered control scheme in the grid-connected mode.  相似文献   

3.
This article presents design of Sliding Mode Controller with proportional integral type sliding function for DC-DC Buck Converter for the controlled power supply. The converter with conventional sliding mode controller results in a steady state error in load voltage. The proposed modified sliding function improves the steady state and dynamic performance of the Convertor and facilitates better choices of controller tuning parameters. The conditions for existence of sliding modes for proposed control scheme are derived. The stability of the closed loop system with proposed sliding mode control is proved and improvement in steady state performance is exemplified. The idea of adaptive tuning for the proposed controller to compensate load variations is outlined. The comparative study of conventional and proposed control strategy is presented. The efficacy of the proposed strategy is endowed by the simulation and experimental results.  相似文献   

4.
针对具有参数不确定性和传感器故障的非线性机电系统,提出一种基于优化自适应阈值和故障重构策略的主动容错控制方法。首先,利用线性分式变换理论对存在参数不确定性的非线性机电系统进行建模,并提出基于粒子群优化算法的优化自适应阈值以提高参数不确定条件下的故障检测性能。其次,通过解析冗余关系推导出系统的动力学方程,并提出一种基于递归终端滑模的跟踪控制策略,以实现系统健康状态下的负载位置跟踪。当系统发生故障时,构建自适应滑模观测器进行传感器故障重构,根据重构结果设计自适应主动容错控制律,并利用故障检测结果进行控制律的实时切换。实验结果表明,所提出的故障检测和主动容错控制方法能在0.06 s内准确的实现传感器故障检测和容错控制,验证了该方法的可行性。  相似文献   

5.
This paper presents the design of a robust nonlinear controller for a parallel AC–DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC–DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations.  相似文献   

6.
In this paper, the altitude and velocity tracking control of a generic hypersonic flight vehicle (HFV) is considered. A novel adaptive terminal sliding mode controller (ATSMC) with strictly lower convex function based nonlinear disturbance observer (SDOB) is proposed for the longitudinal dynamics of HFV in presence of both parametric uncertainties and external disturbances. First, for the sake of enhancing the anti-interference capability, SDOB is presented to estimate and compensate the equivalent disturbances by introducing a strictly lower convex function. Next, the SDOB based ATSMC (SDOB-ATSMC) is proposed to guarantee the system outputs track the reference trajectory. Then, stability of the proposed control scheme is analyzed by the Lyapunov function method. Compared with other HFV control approaches, key novelties of SDOB-ATSMC are that a novel SDOB is proposed and drawn into the (virtual) control laws to compensate the disturbances and that several adaptive laws are used to deal with the differential explosion problem. Finally, it is illustrated by the simulation results that the new method exhibits an excellent robustness and a better disturbance rejection performance than the convention approach.  相似文献   

7.
This study proposes an adaptive sliding mode disturbance rejection control with prescribed performance for robotic manipulators. A transformation with respect to tracking error using certain performance functions is used to ensure the transient and steady-state performances of the trajectory tracking control for robotic manipulators. Using the transformed error, a nonsingular terminal sliding mode surface is proposed. A continuous terminal sliding mode control (SMC) is presented to stabilize the system. To compensate for the uncertainty and external disturbance, a novel sliding mode disturbance observer is proposed. Considering the unknown boundary of the derivative of a lumped disturbance, an adaptive law based on the idea of equivalent control is designed. Combining the adaptive law, continuous nonsingular terminal SMC, and sliding mode disturbance observer, the adaptive sliding mode disturbance rejection control with prescribed performance is developed. Simulations are carried out to demonstrate the effectiveness of the proposed approach.  相似文献   

8.
In the traditional sliding mode control method, there always exist the singularity due to the reduced order of the control method. In order to eliminate the singularity, I propose a new full order sliding mode control method in this article, which has been firstly applied to load frequency control. The full order sliding mode control method includes the terminal sliding mode control (TSM) and the linear sliding mode control (LSM). TSM has the good characteristic of eliminating the singularity due to the avoidance of derivative of terms with fractional power factors. While the LSM is easy to design and has fast time convergence comparing to TSM. The model is based on the system with different kinds of turbine or the same kind of turbine, which contains the nonlinearities. The control purpose is to adjust the frequency deviation to zero. Through the simulation results, it is shown that the frequency deviation can be kept to zero in the condition of different load disturbances by the two approaches, which approves the robustness of the proposed methods. In addition, we compare the two methods with the traditional sliding mode control (SMC), which proves the superiority of the two methods in terms of chattering and response time.  相似文献   

9.
为了满足Buck变换器由待机或轻载向较大负载状态快速转换的需求,基于对传统平均电流控制Buck变换器的动态性能分析,提出了一种改进的适用于断续导通模式/连续导通模式过程的滑模PI混合控制策略。该策略电压外环依据系统状态和导通模式分别采用PI控制器和滑模控制器,其中稳态工况应用PI控制器,负载增大动态工况根据导通模式转换为滑模控制器,并通过统一校正的平均电感电流实现导通模式的准确判断。该混合控制策略可以有效结合PI控制与滑模控制各自的稳态与动态性能优势。仿真和实验结果表明,相比于传统平均电流控制,本策略动态响应时间缩短约65%,电压跌落减小35%以上。  相似文献   

10.
11.
针对并网逆变器在瞬态能量回馈中快速性和抗干扰性的要求,提出了一种新型的复合控制方法。该方法融合了重复控制和滑模变结构控制的优点,利用重复控制优化了等效控制的跟踪特性,有效抑制了并网电流谐波,加快了系统动态响应速度,提高了系统抗干扰性能。仿真和实验结果表明,系统稳态并网电流5次谐波畸变率可控制在1.5%,网侧功率因数接近于1,动态电流响应速度快,有效抑制了能量变化对直流母线电压的影响,从而证明了所提出复合控制方法的有效性。  相似文献   

12.
This paper describes the structure and control algorithms of a controller of a high-voltage source with an output voltage of 60 kV and a power of up to 30 kW. The source is designed to be used as part of a power unit of an electron-beam welding device developed at the Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences (BINP SB RAS). High-quality welds require a stable electron beam energy. Herewith, a standard operation mode is quick and deep modulation of the electron current. The problem of achieving high-quality control and limiting the transient distortions of output voltage of the source is solved. The error of establishing and stabilizing the output voltage is 0.1%, which allows obtaining high-quality welding. Transient distortions at 100% modulation of the load current do not exceed the value of ±1%, which, along with fast reaction of the source to a load breakdown (energy released during breakdown is smaller than 15 J), protects the welded parts and elements of the gun from being damaged by an electron beam.  相似文献   

13.
王磊  张勇  舒杰  殷承良 《机械工程学报》2012,48(14):119-127
在混联式混合动力汽车纯电动至并联驱动模式切换过程中,由于发动机、电动机及离合器瞬态特性的影响,可能导致动力系统输出转矩的突变从而使车辆产生较大的纵向冲击。以混联式混合动力客车为研究对象,考虑发动机和电动机瞬态响应特性的显著不同,针对离合器在结合过程中的运行状态,以提高驾驶性能为目标设计出混合动力客车纯电动至并联驱动模式切换协调控制策略。协调控制采用模糊自适应滑模方法,其中模糊自适应系统用于估计系统参数不确定性引起的偏差以及发动机实际输出转矩与目标转矩的偏差,估计出的偏差值用于调整滑模控制器的控制量,从而提高控制系统的控制精度和鲁棒性。通过仿真及实车试验验证控制策略的有效性。结果表明,设计的控制策略在模式切换过程中满足驾驶员动力需求的前提下使动力系统输出转矩的波动范围和最大冲击度分别下降85%和78%,从而显著提高了混合动力客车的驾驶性能。  相似文献   

14.
A time-varying sliding-coefficient-based decoupled terminal sliding mode control strategy is presented for a class of fourth-order systems. First, the fourth-order system is decoupled into two second-order subsystems. The sliding surface of each subsystem was designed by utilizing time-varying coefficients. Then, the control target of one subsystem to another subsystem was embedded. Thereafter, a terminal sliding mode control method was utilized to make both subsystems converge to their equilibrium points in finite time. The simulation results on the inverted pendulum system demonstrate that the proposed method exhibits a considerable improvement in terms of a faster dynamic response and lower IAE and ITAE values as compared with the existing decoupled control methods.  相似文献   

15.
以C8051F单片机为核心的交流功率放大系统的设计,采用C8051F内部的电压方式D/A转换器输出0~1V的正弦波,用于控制功率放大器输出电压按设定值变化.同时功率放大系统具有过流保护、过压保护与过热保护功能、输出电压稳定、带载能力强、控制精度高等特点.  相似文献   

16.
In this paper, a fast terminal sliding mode control (FTSMC) scheme with double closed loops is proposed for the spacecraft attitude control. The FTSMC laws are included both in an inner control loop and an outer control loop. Firstly, a fast terminal sliding surface (FTSS) is constructed, which can drive the inner loop tracking-error and the outer loop tracking-error on the FTSS to converge to zero in finite time. Secondly, FTSMC strategy is designed by using Lyaponov's method for ensuring the occurrence of the sliding motion in finite time, which can hold the character of fast transient response and improve the tracking accuracy. It is proved that FTSMC can guarantee the convergence of tracking-error in both approaching and sliding mode surface. Finally, simulation results demonstrate the effectiveness of the proposed control scheme.  相似文献   

17.
参数不确定柔性机械手的神经滑模控制   总被引:3,自引:3,他引:0  
通过重新定义系统的输出,将具有不确定性参数的柔性机械手系统分成输入输出子系统与零动态子系统。对输入输出子系统提出神经滑模控制策略,通过满足滑模可达条件对径向基函数(Radial basis function,RBF)神经网络的权值进行在线修正,以逼近系统的非奇异终端滑模控制输入,该方法可有效消除抖振;重新定义的系统输出中的系数,通过将零动态子系统在稳定工作点附近的近似线性化来选取。仿真试验结果表明,该方法实现了柔性机械手点到点的准确控制,消除了柔性机械手末端的弹性振动。  相似文献   

18.

When the dual-axis linear motor is processing components, its accuracy will be affected by the uncertainty and nonlinearity of the system, and the complexity of the processing curve trajectory. The goal is to improve the machining accuracy and response speed of the XY dual-axis permanent magnet synchronous linear motor two-dimensional platform, improve the anti-interference ability, and reduce the contour error. This paper proposes a coupled control method based on dual closed-loop single-axis high-order terminal sliding mode position control (TSMC). First, an improved mathematical model of equivalent contour error is established. Combine the coordinated controller to get the coupling link. Then, to accelerate error convergence and suppress chattering, a high-order terminal sliding mode controller is designed. The single-axis current controller is designed using high-order sliding mode algorithms. Simulations and experiments show the effectiveness and feasibility of the proposed method.

  相似文献   

19.
In this paper, a new model-free adaptive digital integral terminal sliding mode predictive control scheme is proposed for a class of nonlinear discrete-time systems with disturbances. The characteristic of the proposed control approach is easy to be implemented because it merely adopts the input and output data model of the system based on compact form dynamic linearization (CFDL) data-driven technique, while the technique of perturbation estimation is applied to estimate the disturbance term of the system. Moreover, by means of combining model predictive control and CFDL digital integral terminal sliding mode control (CFDL-DITSMC), the CFDL digital integral terminal sliding mode predictive control (CFDL-DITSMPC) method is proposed, which can further improve the tracking accuracy and disturbance rejection performance in comparison with the CFDL model-free adaptive control, neural network quasi-sliding mode control and the CFDL-DITSMC scheme. Meanwhile, the stability of the proposed approach is guaranteed by theoretical analysis, and the effectiveness of the proposed method is also illustrated by numerical simulations and the experiment on the two-tank water level control system.  相似文献   

20.
为解决具有不确定性柔性基、柔性关节空间机械臂的控制问题,提出一种自适应鲁棒终端滑模控制与自适应最优控制相结合的混合控制方案。首先,利用奇异摄动法将系统降阶为慢变子系统及快变子系统;其次,针对慢变系统设计一种由等效控制、鲁棒控制及自适应调节算法组成的轨迹跟踪自适应鲁棒终端滑模控制方案;之后,针对快变系统设计一类基于自适应状态观测的振动最优控制策略。仿真结果表明所提方案在系统刚性、柔性运动控制上的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号