首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
以城市垃圾渗滤液为阳极液基质,比较以MnO_2和TiO_2为阴极催化剂时,对MFC电池性能以及渗滤液中有机污染物去除率的影响。结果表明,MnO_2和TiO_2作为阴极催化剂,可催化氧化阴极最终电子受体(O_2)、提高电子传递速率,最终提高电池性能。阴极负载MnO_2后,电池性能显著提高,稳定输出电压和最大功率密度分别增大到0.43 V和0.89 W/m~3。与未负载阴极催化剂的MFC相比,经MFC运行7 d后,渗滤液中的生物需氧量(BOD)和NH_4~+-N去除率分别提高8.1%和5.0%,达72.9%和91.6%。但由于缺少光照,阴极负载TiO_2后电池性能无明显改善,稳定输出电压仅为0.23 V,最大功率密度仅0.12 W/m~3,且渗滤液中有机污染物的BOD和NH_4~+-N去除率比负载MnO_2催化剂的MFC低8.8%和5.7%。  相似文献   

2.
谢淼  徐龙君  程李钰 《太阳能学报》2018,39(9):2641-2647
处理过的老龄垃圾渗滤液与好氧污泥悬浊液的混合液按不同体积配比(0%、25%、50%、75%和100%),作为阴极液,构建生物阴极型微生物燃料电池(MFC),研究其产电特征以及对阳极底物和阴极液中污染物的处理效果。结果表明,处理过的老龄垃圾渗滤液作为阴极液时,MFC对化学需氧量(COD)和氨氮的去除率较其作为阳极液时分别提高2.27倍和42%。处理过的老龄垃圾渗滤液与好氧活性污泥悬浊液的混合液作为阴极液可提高MFC的产电性能和对污染物的去除效果。以体积比为75%的处理过的老龄垃圾渗滤液作为阴极液时,能显著提高MFC产电效果,输出电压和输出功率密度最大,分别为498 mV、295.2 mW/m~3,内阻最小为244Ω,阳极COD去除率最高为44.81%。  相似文献   

3.
以双室微生物燃料电池(MFC)为研究对象,构建阳极为糖蜜废水、阴极为不同金属离子废水的微生物燃料电池,对其产电性能和去污能力进行测定。结果表明:微生物燃料电池可同时处理有机废水和金属离子废水,其中,Ag~+为阴极液时,其MFC稳定性最好,最高输出电压为198 m V、最大功率密度为23.1 m W/m~2、内阻为500Ω,Cu~(2+)为阴极液时分别为149 m V、13.9 m W/m~2、600Ω,Zn~(2+)为阴极液时分别为16 m V、1.9×10~(-6)m W/m~2、900Ω。阳极化学需氧量(COD)去除率以Ag~+为阴极液时最高,可达72%,Cu~(2+)和Zn~(2+)分别为54%和19.2%。阴极金属离子去除率Ag~+为72%、Cu~(2+)42%、Zn~(2+)19.8%。  相似文献   

4.
以发泡镍为基体,柱状活性炭颗粒和Ti O2粉末均匀混合后作为催化剂涂覆在电极表面。将此复合电极作为双室生物阴极型MFC的电极,研究MFC的产电性能。结果表明:在运行周期内,系统最大输出电压可达到698.1 m V,稳定在500 m V以上的高电压输出时间为18 d;单位质子膜面积上可获得最大功率密度为183.33W/m4,质子膜的使用量明显减少,从而大大降低了MFC的产电成本。同时,阳极室对原生活污水COD去除率可达到74%,而库伦效率也可达到68.9%。试验结果表明,活性炭和Ti O2混合涂覆镍基体电极对双室生物阴极型MFC产电的催化效果良好。  相似文献   

5.
以碳毡和碳布为电极材料,老龄垃圾渗滤液为阳极底物构建生物阴极型微生物燃料电池(MFC),考察碳毡和碳布分别作为阴极和阳极材料时对MFC明在阳极材料相同时,碳毡阴极MFC料相同时,碳布阳极MFC输出电压和功率密度最大(分别为294 mV、95.31 mW/m~3)、化学需氧量和氨氮去除率最大(分别为58.78%、74.38%);阳极、阴极均为碳布的MFC内阻最小(308Ω),阳极、阴极均为碳毡的MFC内阻最大(347Ω)。  相似文献   

6.
以锌掺杂碳纳米管电极为阳极,柔性石墨为阴极,葡萄糖为阳极室供给基质,构建双室微生物燃料电池(MFC),考察锌掺杂量、葡萄糖浓度、温度等因素对MFC产电性能及有机物降解率影响。结果表明,锌掺杂改性的碳纳米管,能加速阳极产电微生物膜形成,提高微生物膜产电能力。在外电阻2300Ω,葡萄糖浓度1257mg/L,Zn S掺杂量0.5 g,温度40℃时,MFC性能最佳,其最大输出电压为1030 m V,最大输出功率31.2 m W/m2,COD去除率92%。  相似文献   

7.
以体积分数为60%的老龄垃圾渗滤液为单室无膜空气阴极微生物燃料电池底物,考察电极间距分别为1、2、3、4、5 cm时电池产电性能及底物中物污染物的去除效果。结果表明,间距为2 cm时输出电压和最大功率密度最大,间距为4 cm时输出电压和最大功率密度最小;电极间距为1~3 cm时电池内阻随电极间距的增大而增大,而电极间距大于3 cm时电池内阻随电极间距的增大而减小。电极间距为2 cm时,微生物燃料电池(MFC)对老龄垃圾渗滤液中化学需氧量(COD)和氨氮去除率最高;5个电池的库伦效率分别为35.6%、27.6%、35.4%、14.9%和14.9%,单室无膜空气阴极MFC可在一定程度上提高老龄垃圾渗滤液的可生化性。  相似文献   

8.
为了分离纯化可适应渗滤液极端环境的产电菌,以广州市白云区李坑和兴丰两处垃圾填埋场获取的渗滤液为底物运行微生物燃料电池(microbial fuel cell, MFC),待稳定输出多个周期后剪取阳极碳布进行单菌落培养和电镜扫描。结果显示,各组渗滤液底物MFC均能成功启动。李坑四季样的MFC峰值电压分别为0.334、0.331、0.321、0.328 V;兴丰四季样的MFC峰值电压分别为0.512、0.54、0.523、0.536 V。对各组渗滤液底物微生物燃料电池的阳极进行菌株分离纯化并单菌落培养构建阳极微生物系统发育树,发现经过MFC驯化后的阳极菌株具有较高丰度和差异性;SEM扫描发现各组实验中菌株均吸附在阳极碳布上形成稳定的膜结构,根据产电呼吸的基本电子传递机制推测渗滤液底物MFC中的微生物通过与阳极直接接触来传递电子。  相似文献   

9.
采用石墨板为阴极构建了单室空气阴极微生物燃料电池(MFC),以混合菌种接种,并以乙酸钠和碳酸氢钠为碳源,研究了该MFC在间歇运行条件下的产电性能、电池内阻情况和COD去除率。结果表明,最高输出电压随着周期数增加而增加,由0.075 9 V上升到0.200 6 V,最大输出功率密度为34.80 mW/m2;在一个运行周期内,电池内阻随着时间的延长而逐渐增大,由376.6Ω上升到682.0Ω,电池内阻的增大将导致输出电压降低。COD去除率由起始的49.23%达到最大值86.99%,说明此单室空气阴极微生物燃料电池在产电的同时处理污水的效果也较好。  相似文献   

10.
构建沉积型微生物燃料电池(SMFC),并考察不同渗滤液浓度条件下SMFC的降解效果及产电性能。结果表明:高、低渗滤液浓度条件下SMFC对污染物质均有较好的去除能力,COD去除率分别为95%,79%,氨氮降解率分别为81%,72%;厌氧污泥中挥发性悬浮固体去除率分别为19.6%,16.4%;稳定运行时,SMFC产电均呈周期性变化,最高输出电压分别为0.261,0.078 V(外阻为1 000Ω),功率密度分别为10.35,0.204 m W/m2。因此,SMFC可实现对垃圾渗滤液的除污产电一体化,且高浓度渗滤液条件下SMFC具有更好的运行效果及产电性能。  相似文献   

11.
研究考察不同体积分数的老龄垃圾渗滤液对微生物燃料电池(MFC)性能的影响.结果表明:在体积分数为40%时,MFC的产电效能最佳,输出电压最高可达370 mV,功率密度为939 mW/m3,且化学需氧量(COD)去除率可达43.3%;无机氮的去除与产电周期有较大关系,当体积分数为100%时,氨氮去除率可达84.1%,表明...  相似文献   

12.
直接碳燃料电池性能研究   总被引:1,自引:0,他引:1  
直接碳燃料电池(DCFC)勿需碳和氧气气化、重整,而直接通过电化学反应产生电能,效率可达80%,燃料的理论利用率可达100%,是一种高效、清洁的燃料电池.文章所介绍的组装DCFC单体电池,以石墨作阳极,不锈钢作阴极,加湿氧气作氧化剂,采用熔融氢氧化物作电解质,并掺入一定量的催化剂,该电池工作温度为500~700℃.对不同工作温度、不同电解质和不同氧气流量下DCFC的输出性能进行了试验研究.结果表明:随着工作温度的升高,电池输出性能有很大提高;KOH比NaOH的导电性好,电池运行更稳定,更有利于电池的输出;氧气流量为70mL/min,温度为650℃时,该电池的输出性能最佳,最大电流密度、功率密度分别为118mA/cm2和0.054 W/cm2,开路电压达到0.76 V.  相似文献   

13.
将不同来源的污泥进行组合构建混合接种物的微生物燃料电池(MFC),通过比较微生物燃料电池的产电性能寻求更为优良的微生物群落,结果表明:将华南农业大学资源环境学院新肥室沼气池污泥、湖南省祁东县淹水稻田土和燕京啤酒厂废水处理二沉池污泥混合作为组合接种物的MFC性能较优,其最大输出电压0.59 V,最大功率密度10.81 W/m3。利用PCR-DGGE技术解析该电池阳极表面优势微生物的群落,分析发现阳极生物膜中占优势的菌种为Gammaproteobacteria菌纲中的Shewanella,其次为Pseudomonas aeruginosa,还存在Verrucomicrobiae和Flavobacteria菌纲的微生物。  相似文献   

14.
直接碳燃料电池_DCFC_实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
直接碳燃料电池是一种高效、清洁的燃料电池技术,其原理是碳和氧气勿需气化和重整而直接通过电化学反应产生电能,效率可达80%,燃料利用率约达100%。自行组装了DCFC单体电池,工作温度为500~700℃;该电池采用熔融氢氧化物作电解质,并掺入一定量的催化剂;石墨作阳极,不锈钢作阴极,加湿氧气作氧化剂。对不同的电解质、不同的氧气流量下DCFC的输出性能进行了试验研究。结果表明,KOH比NaOH的导电性好,电池运行更稳定,更有利于电池的输出;氧气流量为70mL/min时,该电池的输出性能最佳,最大电流密度、功率密度分别为105mA/cm2和0.041W/cm2,开路电压达到0.74V。电流密度为45mA/cm2时,输出电压0.65V,可连续稳定运行20h。提出了热解-直接碳燃料电池联合系统,并以C10H22为例,分析了联合系统发电效率高达76.5%,表明该系统在未来集中式电厂中有很好的应用前景。  相似文献   

15.
阴极电子受体对微生物燃料电池性能的影响   总被引:1,自引:0,他引:1  
以双室型微生物燃料电池为试验装置,比较铁氰化钾、重铬酸钾、高锰酸钾作为阴极电子受体时微生物燃料电池的电压和功率输出。结果表明,高锰酸钾与重铬酸钾混合电子受体对微生物燃料电池性能的提高没有显著效果,不如两者的单独表现;高锰酸钾对应的最高输出电压可达1 160 mV,但很不稳定,会很快下降到600 mV左右,在实际应用中有一定障碍;在酸性条件(pH=3.0)下,重铬酸钾的开路电压为1 081.2 mV,最大输出功率密度为35.1 W/m3,电池内阻为170.27Ω,而且表现稳定,是理想的阴极电子受体。  相似文献   

16.
邢延  曹腾良  张开心  李慧 《节能》2020,39(5):40-42
为了提高污泥微生物燃料电池(MFC)产电性能和污泥处理效果,基于超声波破壁预处理技术,构建了以超声预处理污泥为底物的单室空气阴极污泥MFC,以污泥MFC的输出电压、最大功率密度、内电阻、污泥浓度和TCOD浓度为考察指标,探究不同声能密度预处理对污泥MFC产电性能及污泥降解效能的影响,结果表明,随着预处理超声密度的增加,MFC的产电性能和污泥处理效果得到有效提升。与未经预处理的污泥MFC相比,预处理声能密度为1.5 W/m L时,MFC稳定输出电压提高90.19%,最大输出功率密度提高135.43%,污泥减量效果提升68.8%,TCOD去除效果提高76.17%。本研究实验结果证明采用超声波对污泥进行预处理,能够有效提高污泥MFC的产电性能和污泥降解效率。  相似文献   

17.
利用机械混合及化学复合两种混合方式制备出用于微生物燃料电池(MFC)阴极的Mn O_2与活性炭导电材料的混合催化剂,混合质量比分别为1∶3,1∶1和3∶1。将以各催化剂制作的碳布阴极置于空气阴极MFC中运行,利用线性扫描伏安法测试碳布阴极的性能。研究表明,两种混合催化剂均在混合质量比为1∶1时具有最佳性能;化学复合催化剂MFC的最大功率密度达到336 m W/m~2,是单纯使用Mn O_2粉末时的2.51倍,优于机械混合的催化剂。  相似文献   

18.
研究了泡沫镍阴极的制备和对单室微生物燃料电池产电性能的影响。研究发现,当阴极PTFE扩散层超过4+1层时,MFC的功率密度随扩散层数增加而逐渐下降;当阴极扩散层为五层(4+1层)时,微生物燃料电池最大功率密度最大,达到31.3 W/m3,电池的库仑效率为25%;当使用7+1层PTFE扩散层时,电池功率下降到25.6 W/m3;泡沫镍阴极厚度对阴极性能影响不大;研究发现,滚压后再涂一层扩散层能够抑制泡沫镍阴极的长期运行的析盐。  相似文献   

19.
利用单室微生物燃料电池(MFC)进行了同步回收污水中氮、磷和产电的研究。MFC经过14d的启动达到稳定运行状态,输出电压最大达到559.2m V,COD去除率最大为92.2%,污水中氮、磷的最大回收率分别达到87.1%和88.3%,MFC内氮、磷的沉积是化学反应与电化学反应的协同作用过程。  相似文献   

20.
《可再生能源》2017,(9):1279-1283
反硝化除磷产电装置以连续流双污泥反硝化除磷工艺为基础,以厌氧池和中沉池分别作为微生物燃料电池的阳极室和阴极室,以模拟的生活污水作为处理对象。反硝化除磷产电装置稳定运行2个月后,COD、氨氮和磷的平均去除率分别为65.56%,57.16%和53.79%,最高去除率分别达到了75%,75%和65%,产生的电压和电流强度的平均值分别为0.58 V和6.31 m A,最高电压值达到了0.7 V。反硝化除磷产电装置的成功启动与运行,不仅去除了生活污水中的COD、氨氮和磷,同时产生了稳定的电能,实现了反硝化除磷与微生物燃料电池的耦合,为反硝化除磷产电工艺的深入研究奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号