首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
本文用溶胶-凝胶自燃烧法制备了Ni0.5Zn0.5Fe2O4粉末颗粒,以甲醛为还原剂在Ni0.5Zn05Fe2O4颗粒表面进行了化学镀铜,制备了Cu/Ni0.5Zn0.5Fe2O4复合粉体.用扫描电镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)对镀铜前的Ni0.5Zn0.5Fe2O4颗粒以及镀铜后的复合纳米颗粒进行了表征.对镀铜前的Ni0.5Zn0.5Fe2O4粉体和不同镀铜量的Cu/Ni0.5Zn0.5Fe2O4复合粉体进行了电磁性能的研究,结果表明镀铜后镍锌铁氧体的吸波性能明显提高,增重量为65%的Cu/Ni0.5Zn0.5Fe2O4复合粉体在频率为11GHz处反射率可达-12dB左右.  相似文献   

2.
采用固相反应法合成了(1-x)CaTiO3/xNi0.5Zn0.5Fe2O4(0≤x≤1.0)复合材料,并研究了复合材料的物相、微观结构、介电性能和磁性能。结果表明:样品中仅含有钙钛矿型CaTiO3和尖晶石型Ni0.5Zn0.5Fe2O4。1260℃保温3h,样品相对密度达到98.91%,颗粒尺寸约为2μm。样品介电常数随Ni0.5Zn0.5Fe2O4含量(x)增加而增大。当x=0.7、测试频率为103 Hz时,样品介电常数(εr)和介电损耗(tanδ)分别为2629.18和1.74。(1-x)CaTiO3/xNi0.5Zn0.5Fe2O4复合材料显示磁性。其中x=0.7时,样品饱和磁化强度(Ms)达到49.07A·m2/kg;这归因于Ni0.5Zn0.5Fe2O4具有优异的磁性能。  相似文献   

3.
在Ni0.5Zn0.5Nd0.02Fe1.98O4纳米粒子表面原位聚合苯胺制备了Ni0.5Zn0.5Nd0.02Fe1.98O4-聚苯胺(PANI)纳米复合材料.铁氧体含量为0%、15%和30%样品的结构、形貌和电磁性能分别采用X射线衍射仪(XRD)、透射电子显微镜(TEM)和HB8510B网络分析仪进行了研究.结果表明,聚苯胺包覆层对Ni0.5Zn0.5Nd0.02Fe1.98O4的结晶度有一定影响.在X波段(8.2~12.4 GHz),复介电常数的实部随铁氧体含量的增加而减小,虚部随铁氧体含量的增加而增大.复磁导率的实部和虚部都随铁氧体含量的增加而增大.  相似文献   

4.
以Zn(NO3)2.6H2O、Ni(NO3)2.6H2O和Fe(NO3)3.9H2O及柠檬酸为原料,采用溶胶-凝胶法制备前驱体,在1 200℃下煅烧3 h合成ZnFe2O4和Ni0.5Zn0.5Fe2O4铁氧体粉体。利用差热分析、X射线衍射、扫描电镜、透射电镜和红外光谱等测试手段对产物进行分析和表征。结果表明:ZnFe2O4和Ni0.5Zn0.5Fe2O4属于立方晶系尖晶石结构,结晶完整,晶粒大小在100 nm左右。在0.2~1.8 GHz的频率下对产品进行了电磁损耗性能测试,发现Ni0.5Zn0.5Fe2O4具有较好的电磁损耗特性。  相似文献   

5.
NiZnCo铁氧体包覆铁填充碳纳米管的吸波性能   总被引:1,自引:0,他引:1  
利用溶胶凝胶法制备了Ni0.5 Zn0.45 Co0.05 FezO4/铁填充碳纳米管复合粉末,实现了Ni0.5Zn0.45 Co0.05Fe2O4纳米颗粒对碳管的包覆.并用同轴法测量了纳米复合粉末与石蜡混合物的电磁参数,其中纳米复合粉末的添加量分别为30%和60%,根据电磁参数计算了材料的反射率.结果表明纳米复合粉末的主要吸波频段在2~6GHz,当纳米复合粉末添加量为60%(质量分数),厚度为2mm时,微波吸收峰值出现在大约4GHz处,达到5.8dB.与纯Ni0.5Zn0.45 Co0.05Fe2O4纳米粉末相比有了比较明显的提高.  相似文献   

6.
La掺杂纳米晶Ni-Zn铁氧体的制备及电磁性能   总被引:1,自引:0,他引:1  
采用高分子凝胶法制备了Ni0.5Zn0.5LaxFe2-xO4(x=0,0.02,0.05和0.08)纳米晶铁氧体.采用X射线衍射仪(XRD)、透射电镜(TEM)和HP8510网络分析仪分别对其结构、形貌和电磁性能进行了研究.结果表明,当x=0,0.02和0.05时,所得粉体为纯立方晶系尖晶石结构.Ni0.5Zn0.5Fe2O4粉体平均粒径为70nm.随着La离子掺杂量的增加,红外光谱中550cm-1处吸收峰向高波数移动,420cm-1处吸收峰向低波数移动.La离子的掺杂对Ni-Zn铁氧体的电磁性能有一定的影响.在X波段,与Ni0.5Zn0.5Fe2O4铁氧体相比,掺杂La的Ni-Zn铁氧体的tanδm值降低,tanδε值升高.Ni0.5Zn0.5La0.02Fe1.98O4铁氧体的tanδε平均值为0.616.  相似文献   

7.
用共沉淀法合成了具有单一的立方型钙钛矿结构的新型阴极材料Ba0.5Sr0.5Co0.8Fe0.2O3-δ,研究了材料的电导率和热膨胀系数与温度的关系.结果表明,前驱体在1100℃煅烧3 h后形成具有单一的立方型钙钛矿结构尺寸小于1 μm的Ba0.5Sr0.5Co0.8Fe0.2O3-δ粉末;在500~600℃致密材料的电导率高于100 S/cm,热膨胀系数随着温度的升高从13.62×10-6逐渐增大到18.75×10-6,当温度超过700℃后急剧增大.致密材料热膨胀系数在高温下剧增的主要原因是材料中比较大的氧损失.  相似文献   

8.
江永长  顾莹  杨秋红  金应秀 《功能材料》2011,42(1):148-150,154
研究了Zr4+离子B位置换改性对(Pb0.5Ca0.5)(Fe0.5Nb0.5)O3陶瓷微波介电性能.实验结果表明,(Pb0.5Ca0.5)(Fe0.5Nb0.5)O3(PCFNZ)陶瓷样品呈现单一斜方钙钛矿相结构.随Zr(4+)离子的置换量增加,PCFNZ陶瓷体系的Qr值和晶粒尺寸逐渐减小;介电常数εr随着置换量增加...  相似文献   

9.
以金属硝酸盐和柠檬酸为原料,用溶胶凝胶自燃烧法制备NiZn系铁氧体前驱体粉末(Ni0.4Zn0.6Fe2O4,Ni0.2Zn0.6Cu0.2Fe2O4,Ni0.33Zn0.59Cu0.11Fe1.97O4(Bi2O3)0.002和Ni0.33Zn0.59Cu0.11 Fe1.97O4(Bi2O3)0.002(MnO2)0.02),然后经30小时高能球磨,从X-ray衍射谱中发现前驱体粉末虽然基本上是尖晶石结构,但是还有一些杂相,经过球磨,杂相明显减少,结构更加完整,颗粒减小.前驱体粉末Ni0.33Zn0.59Cu0.11Fe1.97O4(Bi2O3)0.002经30小时球磨后,在空气中退火,退火温度分别为400℃,600℃,800℃,900℃,1000℃.用X-ray衍射谱分析其物相,发现在800℃退火得到单相的尖晶石结构,无杂相.该样品的最佳退火温度低于1000℃.用振动样品磁强计分别测量制备态和退火态样品粉末的磁性,可以看出,随退火温度的升高,比饱和磁化强度σs逐渐增大,矫顽力Hc逐渐减小,当900℃退火后,比饱和磁化强度已接近块状NiZn系铁氧体.1000℃退火后,上述四种样品中Ni0.4Zn0.6Fe2O4具有最高的比饱和磁化强度σs=65.09emu/g.本文为NiZn铁氧体的低温烧结提供了有用的实验数据.  相似文献   

10.
MgFe2O4/Fe2O3纳米粉的溶胶-凝胶法合成及电磁波吸收特性   总被引:1,自引:0,他引:1  
王清成  王雪梅  庄稼 《功能材料》2005,36(12):1839-1841
用热分解柠檬酸盐凝胶的方法制备了MgFe2O4/Fe2O3复合纳米粉体,用综合热分析仪、X射线衍射仪、透射电镜、纳米粒度测量仪、电磁测量仪对所制备样品的结构、粒径分布、电磁波吸收特性等进行表征。结果表明,产物为平均粒径44nm的MgFe2O4和Fe2O3的混合物,在0.1、1.0和1.8GHz处tgδ(ε″+μ″/μ′)分别为0.206、0.265及0.614。  相似文献   

11.
张宁  吴华强  冒丽  李明明  李亭亭  夏玲玲 《功能材料》2012,43(18):2554-2557,2563
以多壁碳纳米管(MWCNTs)为模板,三乙二醇(TREG)为溶剂,采用微波多元醇法制备MWC-NTs负载组成可控的Ni1-xZnxFe2O4(x=0.4、0.5、0.6)纳米复合材料Ni1-xZnxFe2O4/MWCNTs。其结构和形貌通过XRD、SEM、TEM和EDX进行表征,用VSM测试样品的磁性,并探讨了微波功率、微波时间对镍锌铁氧体负载的影响。结果表明立方系尖晶石结构的单分散Ni1-xZnxFe2O4磁性纳米粒子均匀负载在碳纳米管表面,平均粒径约为6nm;其磁性能与镍锌铁氧体的组成有关,随着Zn含量的增加,饱和磁化强度(Ms)先增大后减小,当x=0.5时Ms达到最大值。矫顽力(Hc)都比较小,在室温下表现为超顺磁性。  相似文献   

12.
SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers of diameters about 100 nm with mass ratio 1:1 have been prepared by the electrospinning and calcination process. The SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrites are formed after calcined at 700 degrees C for 2 hours. The composite ferrite nanofibers are fabricated from nanosized Ni(0.5)Zn(0.5)Fe2O4 and SrFe12O19 ferrite grains with a uniform phase distribution. The ferrite grain size increases from about 11 to 36 nm for Ni(0.5)Zn(0.5)Fe12O4 and 24 to 56 nm for SrFe12O19 with the calcination temperature increasing from 700 to 1100 degrees C. With the ferrite grain size increasing, the coercivity (Hc) and remanence (Mr) for the SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers initially increase, reaching a maximum value of 118.4 kA/m and 31.5 Am2/kg at the grain size about 40 nm (SrFe12O19) and 24 nm (Ni(0.5)Zn(0.5)Fe2O4) respectively, and then show a reduction tendency with a further increase of the ferrite grain size. The specific saturation magnetization (Msh) of 63.2 Am2/kg for the SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers obtained at 900 degrees C for 2 hours locates between that for the single SrFe12O19 ferrite (48.5 Am2/kg) and the single Ni(0.5)Zn(0.5)Fe2O4 ferrite (69.3 Am2/kg). In particular, the Mr value 31.5 Am2/kg for the SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers is much higher than that for the individual SrFe12O19 (25.9 Am2/kg) and Ni(0.5)Zn(0.5)Fe2O4 ferrite (11.2 Am2/kg). These enhanced magnetic properties for the composite ferrite nanofibers can be attributed to the exchange-coupling interaction in the composite.  相似文献   

13.
利用溶胶凝胶法制备了尖晶石型 Ni0.5Zn0.45Co0.05Fe2O4 纳米颗粒,设置了3种热处理工艺,发现随着热处理温度的提高,热处理时间的延长,颗粒长大,静磁性能提高。当热处理温度为800℃,保温8h,材料具有比较好的静磁性能(Ms=30.241Oe,Hc=73.261 emg/g,μi=0.210)。另外,将前驱体在磁场条件下热处理,得到颗粒尺寸比同种热处理工艺未加磁场条件下的大,并且静磁性能有了比较大的提高,其比饱和磁化强度甚至比在更高热处理温度,更长热处理时间下制备的NiZnCo铁氧体大。  相似文献   

14.
用湿化学法合成了Sr4CoxFe6-xO13±δ系列混合导体氧化物,对其相结构与透氧性能进行了研究.钴离子的引入导致材料中钙钛矿型杂相的出现,X=2.0时材料中还产生了CoO杂相,x=2.6时材料呈现钙钛矿型结构.Sr4Fe4Co2O13±δ的相结构还与焙烧温度及环境气氛中的氧浓度密切相关.随着氧浓度的降低,材料从纯相Sr4Fe6O13结构(纯氧气气氛下)转变为Sr4Fe6O13结构、钙钛矿型结构和CoO共存(空气气氛下),直至转变为针镍矿结构、 Sr4Fe6O13结构和 CoO共存. Sr4Fe6Co13±δ导体膜在air/He氧浓差梯度下的透氧量为 1.5×108mol/cm2·s(850℃),在650~850℃范围内透氧活化能为70kJ/mol.  相似文献   

15.
Nanocrystalline nickel zinc ferrite powders (Ni=Zn1-xFe2O4, A for x=0, B for x=0.2, C for x=0.5, D for x= 0.8 and E for x= 1) were synthesized by polyacrylamide gel method. X-ray diffraction (XRD), transmission electron microscopy (TEM) and wave-guide were used to characterize the composition. The XRD results show that the dried gel powders are amorphous, and the characteristic peaks of the spinel Ni0.5Zn0.5Fe2O4 appear after the gel is calcined at 400℃ for 1 h. When the calcining temperatures are 600 and 800℃, the average grain sizes are identified by TEM to be 10 and 30 nm, respectively. The NixZn1-xFe2O4 powders have both dielectric loss and magnetic loss in the frequency range of 8.2-11.0GHz. With the increase of Ni^2+ ions content, the dielectric parameters (ε′) and permeability (u′) of the NixZn1-xFe2O4 powders decrease while the dielectric loss (ε″), magnetic loss (u″) and the reflection loss increase.  相似文献   

16.
高文元  孙俊才  刘扬 《功能材料》2006,37(3):505-509
使用金属氧化物La2O3,NiO,CuO和Co2O3作为原料,固相反应法能够合成出具有K2NiF4型结构单一相的、且晶粒尺寸在35~50nm范围的La2Ni0.5M0.5O4 δ(M=Co,Cu)粉料,用XRD、SEM和直流四极探针电导测试法研究了合成La2Ni0.5M0.5O4 δ(M=Co,Cu)粉料的煅烧工艺条件和掺杂元素对电性能的影响以及粉料的颗粒形貌.随着煅烧温度的升高和保温时间的延长,晶粒尺寸在不断长大;合成的粉料在1300℃烧结5h后所有样品的电导率在空气条件下于100~800℃范围内都在增加.掺杂C0或Cu后的材料La2NiO4 δ的电导率均有增加,但掺杂Co后材料电导率要大于掺杂Cu的电导率.为此确定La2Ni0.5M0.5O4 δ(M=Co,Cu)类粉料固相法合成的适宜煅烧条件为1400℃下保温时间14h.  相似文献   

17.
采用电爆炸技术,合成了粒径约为70nm 的Ni纳米颗粒,以3-巯基丙基三甲氧基硅烷偶联剂(MPTS)对Ni颗粒进行表面改性,利用共沉淀法对改性Ni颗粒进行包覆得到核-壳结构的复合纳米颗粒。将获得的复合纳米颗粒作为微波吸收剂, 并以不同比例分散到热固性酚醛树脂中,涂刷在200mm×200mm的金属板上,用RAM反射率远场RCS测量法研究了微波吸收特性。研究表明,核-壳结构Fe3O4/Ni复合颗粒作为微波吸收剂,在相同质量比条件下,其微波吸收性能明显优于纯Ni纳米颗粒或Fe3O4纳米颗粒的情况,并且在Fe3O4/Ni核-壳结构复合纳米颗粒中随着镍含量的提高,微波吸收增强,而随着Fe3O4含量的增加,微波吸收频段向高频段移动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号