首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
CaCu3-xCrxTi4O12 (x?=?0.00–0.20) ceramics were prepared via a polymer pyrolysis solution route. Their dielectric properties were improved by Cr3+ doping resulting in an optimal dielectric constant value of 7156 and a low tanδ?value of 0.092 in a sample with x?=?0.08. This might have resulted from a decrease in oxygen vacancies at grain boundaries. XANES spectra confirmed the presence of Cu+ ions in all ceramic samples with a decreasing Cu+/Cu2+ ratio due to an increased content of Cr3+ ions. All CaCu3-xCrxTi4O12 ceramics showed nonlinear characteristic with improvement in both the breakdown field (Eb) and its nonlinear coefficient (α). Interestingly, the highest values of α, ~ 114.4, and that of Eb, ~8455.0?±?123.6?V?cm?1, were obtained in a CaCu3-xCrxTi4O12 sample with x?=?0.08. The improvement of dielectric and nonlinear properties suggests that they originate from a reduction of oxygen vacancies at grain boundaries.  相似文献   

2.
《Ceramics International》2023,49(1):134-144
The effects of the A-site transition from Ca2+ to Cd2+ on the microstructure, morphology, and electrical properties of Ca1–xCdxCu3Ti4O12 thin films were studied. The film surfaces are smooth, compact, and without cracks. The CaCu3Ti4O12 and CdCu3Ti4O12 films had similar morphologies and electrical properties. The grain size initially increased and subsequently decreased with the transition from Ca2+ to Cd2+ at the A site. The change in Ca sites has an obvious effect on Cu sites. The film with more copper-rich phases at the grain boundaries had the largest grain size when Ca2+ and Cd2+ equally occupied the A sites. The dielectric constant of Ca1–xCdxCu3Ti4O12 was closely related to the copper oxide secondary phase. The dielectric loss tangent and nonlinearity coefficient were associated with the compact structure, copper oxide secondary phase, copper vacancies and improved grain boundary response. The simultaneous occupancy of the A sites by Ca2+ and Cd2+ improves the dielectric and nonlinear properties of Ca1–xCdxCu3Ti4O12. Optimal dielectric properties (?r = 5238 and tan δ = 0.009 at 1 kHz) and an enhanced nonlinearity coefficient (~4.22) were simultaneously obtained for the Ca0.5Cd0.5Cu3Ti4O12 thin film. This study demonstrates that the extrinsic mechanism is the main origin of the high dielectric constant values in Ca1–xCdxCu3Ti4O12 films. The resulting films are suitable for applications in capacitors.  相似文献   

3.
The good dielectric and non-ohmic properties of CaCu3Ti4O12 and CaCu2.95Zn0.05Ti4-xZrxO12 (x?=?0, 0.05 and 0.10) thin films prepared by a sol-gel method were determined. The enhanced dielectric properties, with a dielectric constant of ε' ≈ 4357 and a dielectric loss of tan δ?≈?0.019, of the CaCu2.95Zn0.05Ti3.95Zr0.05O12 (ZnZr05) thin film at 1?kHz and room temperature were investigated. The XPS spectrum showed that the ZnZr05 film can produce copper vacancies VCu” and mixed valence structures for Cu+/Cu2+ and Ti3+/Ti4+ inside the crystal. The ZnZr05 film maintained a high dielectric constant due to the large grain sizes and the presence of the mixed valence structures, while its low tan δ was attributed to an increase in the VCu” concentration. At the same time, the enhanced nonlinear coefficient (4.2) and low leakage current (193?μA) of the ZnZr05 film were explained in detail.  相似文献   

4.
CaCu3-xZnxTi4O12 ceramics (x = 0, 0.05, 0.10) were successfully prepared by a conventional solid-state reaction method. Their structural and dielectric properties, and nonlinear electrical response were systematically inspected. The X-ray diffraction results indicated that single-phase CaCu3Ti4O12 (JCPDS no. 75–2188) was obtained in all sintered ceramics. Changes in the lattice parameter are well-matched with the computational result, indicating an occupation of Zn2+ doping ions at Cu2+ sites. The overall tendency shows that the average grain size decreases when x increases. Due to a decrease in overall grain size, the dielectric permittivity of CaCu3-xZnxTi4O12 decreases expressively. Despite a decrease in the dielectric permittivity, it remains at a high level in the doped ceramics (~3,406–11,441). Besides retention in high dielectric permittivity, the dielectric loss tangent of x = 0.05 and 0.10 (~0.074–0.076) is lower than that of x = 0 (~0.227). A reduction in the dielectric loss tangent in the CaCu3-xZnxTi4O12 ceramics is closely associated with the enhanced grain boundary response. Increases in grain boundary resistance, breakdown electric field, and conduction activation energy of grain boundary as a result of Zn2+ substitution are shown to play a crucial role in improved grain boundary response. Furthermore, the XPS analysis shows the existence of Cu+/Cu2+ and Ti3+/Ti4+, indicating charge compensation due to the loss of oxygen lattice. Based on all results of this work, enhanced dielectric properties of the Zn-doped CCTO can be explained using the internal barrier layer capacitor model.  相似文献   

5.
The microstructural evolution, non‐Ohmic properties, and giant dielectric properties of CaCu3Ti4?xGexO12 ceramics (x=0‐0.10) are systematically investigated. The Rietveld refinement confirms the existence of a pure CaCu3Ti4O12 phase in all samples. Significantly enlarged grain sizes of CaCu3Ti4?xGexO12 ceramics are associated with the liquid phase sintering mechanism. Enhanced dielectric permittivity from 6.90×104 to 1.08×105 can be achieved by increasing Ge4+ dopant from x=0‐0.10, whereas the loss tangent is remarkably reduced by a factor of ≈10. NonOhmic properties are enhanced by Ge4+ doping ions. Using impedance and admittance spectroscopies, the underlying mechanisms for the dielectric and nonlinear properties are well described. The improved nonlinear properties and reduced loss tangent are attributed to the enhanced resistance and conduction activation energy of the grain boundaries. The largely enhanced permittivity is closely associated with the enlarged grain sizes and the increase in the Cu+/Cu2+ and Ti3+/Ti4+ ratios, which are calculated from the X‐ray absorption near‐edge structure.  相似文献   

6.
We have synthesized Cu2MgxZn1–xSn(S,Se)4 (0?≤?x?≤?0.6) thin films by a facile sol-gel method, and studied the influence of Mg concentration on the crystal structure, surface morphology and photoelectric performance of Cu2MgxZn1–xSn(S,Se)4 thin films systematically. It was shown that the smaller Zn2+ in Kesterite phase Cu2ZnSn(S,Se)4 will be replaced by larger Mg2+, forming uniform pure phase Cu2MgxZn1–xSn(S,Se)4. The band gap of Cu2MgxZn1–xSn(S,Se)4 films can be adjusted from 1.12 to 0.88?eV as the x value changes from 0 to 0.6. Furthermore, the Cu2MgxZn1–xSn(S,Se)4 thin films with large grain size, smooth surface and less grain boundaries was obtained at an optimized condition of x?=?0.2. The carrier concentration of Cu2MgxZn1–xSn(S,Se)4 thin film reaches the maximum 6.47?×?1018 cm?3 at x?=?0.2, which is a potential material to be the absorption layer of high efficiency solar cells.  相似文献   

7.
Various strategies to improve the dielectric properties of ACu3Ti4O12 (A = Sr, Ca, Ba, Cd, and Na1/2Bi1/2) ceramics have widely been investigated. However, the reduction in the loss tangent (tanδ) is usually accompanied by the decreased dielectric permittivity (ε′), or vice versa. Herein, we report a route to considerably increase ε′ with a simultaneous reduction in tanδ in Ta5+–doped Na1/2Y1/2Cu3Ti4O12 (NYCTO) ceramics. Dense microstructures with segregation of Cu– and Ta–rich phases along the grain boundaries (GBs) and slightly increased mean grain size were observed. The samples prepared via solid-state reaction displayed an increase in ε′ by more than a factor of 3, whereas tanδ was significantly reduced by an order of magnitude. The GB–conduction activation energy and resistance raised due to the segregation of Cu/Ta–rich phases along the GBs, resulting in a decreased tanδ. Concurrently, the grain–conduction activation energy and grain resistance of the NYCTO ceramics were reduced by Ta5+ doping ions owing to the increased Cu+/Cu2+, Cu3+/Cu2+, and Ti3+/Ti4+ ratios, resulting in enhanced interfacial polarization and ε′. The effects of Ta5+ dopant on the giant dielectric response and electrical properties of the grain and GBs were described based on the Maxwell–Wagner polarization at the insulating GB interface, following the internal barrier layer capacitor model.  相似文献   

8.
Giant dielectric behavior and electrical properties of monovalent cation/anion (Li+, F) co-doped CaCu3Ti4O12 ceramics prepared by a solid-state reaction route were systematically investigated. Substitution of Li+ and F led to a significantly enlarged mean grain size. A reduced loss tangent (tanδ ~0.06) with the retainment of an ultra-high dielectric permittivity (ε′ ~7.7-8.8 × 104) was achieved in the co-doped ceramics, while the breakdown electric field and nonlinear coefficient of CaCu3Ti4O12 ceramics were increased by co-doping with (Li+, F). The variations in nonlinear electrical properties and giant dielectric response, as well as the dielectric relaxation, were well explained by the Maxwell-Wagner polarization model for an electrically heterogeneous microstructure, in which a Schottky barrier height at the grain boundaries (GBs) was formed. ε′ was closely correlated to the GB capacitance. Significantly decreased tanδ value and enhanced nonlinear properties were related to a significant increase in the GB resistance, which was attributed to the significantly increased potential barrier height and conduction activation energy at the GBs. The semiconducting nature of the grains was also studied using X-ray photoelectron spectroscopy and found to originate from the presence of Cu+ and Ti3+ ions.  相似文献   

9.
The influences of Ga3+ doping ions on the microstructure, dielectric and electrical properties of CaCu3Ti4O12 ceramics were investigated systematically. Addition of Ga3+ ions can cause a great increase in the mean grain size of CaCu3Ti4O12 ceramics. This is ascribed to the ability of Ga3+ doping to enhance grain boundary mobility. Doping CaCu3Ti4O12 with 0.25 mol% of Ga3+ caused a large increase in its dielectric constant from 5439 to 31,331. The loss tangent decreased from 0.153 to 0.044. The giant dielectric response and dielectric relaxation behavior can be well described by the internal barrier layer capacitor model based on Maxwell?Wagner polarization at grain boundaries. The nonlinear coefficient, breakdown field, and electrostatic potential barrier at grain boundaries decreased with increasing Ga3+ content. Our results demonstrated the importance of ceramic microstructure and electrical responses of grain and grain boundaries in controlling the giant dielectric response and dielectric relaxation behavior of CaCu3Ti4O12 ceramics.  相似文献   

10.
The dielectric and non‐Ohmic properties of Na1/2Y1/2Cu3Ti4O12 ceramics sintered under various conditions to obtain different microstructures were investigated. Microstructure analysis confirmed the presence of Na, Y, Cu, Ti, and O and these elements were well dispersed in the microstructure. Na1/2Y1/2Cu3Ti4O12 ceramics exhibited non‐Ohmic characteristics with large nonlinear coefficients of about 5.7–6.6 irrespectively of sintering conditions. The breakdown electric field of fine‐grained ceramic with the mean grain size of ≈1.7 μm (≈5600 V/cm) was much larger than those of the course‐grained ceramics with grain sizes of ≈9.5–10.4 μm (≈1850–2180 V/cm). Through optimization of sintering conditions, a low loss tangent of about 0.03 and very high dielectric permittivities of 18 000–23 000 with good temperature stability were successfully accomplished. The electrical responses of the grains and grain boundaries can, respectively, be well described using admittance and impedance spectroscopy analyses based on the brickwork layer model. A possible mechanism for the origin of semiconducting grains is discussed. The colossal dielectric response was reasonably described as closely correlated with the electrically heterogeneous microstructure by means of strong interfacial polarization at the insulating grain‐boundary layers. The non‐Ohmic properties of Na1/2Y1/2Cu3Ti4O12 ceramics were primarily related to their microstructure, i.e., grain size and volume fraction of grain boundaries.  相似文献   

11.
Giant dielectric ceramic, Na1/2Sm1/2Cu3Ti4O12, was successfully prepared by a modified sol-gel method. X-ray diffraction experiments indicated that a body-centered cubic structure with a space group of Im3 was obtained. Our density functional theory calculations revealed that codoping Na and Sm in the CaCu3Ti4O12 structure resulted in charge compensation between Na and Sm ions in this structure, whereas the oxidation states of Cu and Ti were unaltered. Giant dielectric permittivity ~7.21 × 103 - 8.04 × 103 and low dielectric loss tangent ~0.045–0.049 were accomplished at a sintering temperature of 1050 °C for 12–18 h. Nonlinear J - E property with breakdown electric field ~5.13 – 5.78 × 103 V/cm and nonlinear coefficient ~6.08–6.82 were also achieved. The n-type semiconducting grain originated from short-range migrations of mixed Cu+/Cu2+ and Ti3+/Ti4+ charges. Finally, our charge analysis showed that the occurrence of Cu+ and Ti3+ was related to the existence of oxygen vacancy in these ceramics.  相似文献   

12.
xBi2/3Cu3Ti4O12/(1-x)CaCu3Ti4O12 composites were prepared by traditional solid-state reaction method. Extremely high nonlinear coefficient of 25 and breakdown field of 18.92 kV·cm−1 were obtained in small current range of 0.1−1 mA·cm-2. In addition, reduced dielectric loss of 0.055 was achieved with high dielectric constant of 1369. Optimized nonlinear and dielectric properties were integrated to make the composites a promising dual-function varistor-capacitor candidate. Microstructure analysis discovered two areas with various Bi/Ca ratio, designated as Bi-H and Bi-L respectively. It was found that the maximum ratio of Bi-H/Bi-L heterogeneous interface corresponded to optimized nonlinear and dielectric performance, which was associated with elevated potential barrier height and huge grain boundary resistance. Combined with relaxation analysis, a core-shell structure was proposed to elaborate microstructure evolution in xBi2/3Cu3Ti4O12/(1-x)CaCu3Ti4O12 composite. According to the core-shell model, variation of heterogeneous interface was illustrated on how to influence nonlinear properties, which was well fitted to experimental results.  相似文献   

13.
In this paper we present the structural, magnetic and dielectric properties of ceramic nickel manganite NiMn2O4+δ produced by using nickel permanganate Ni(MnO4)2xH2O as a precursor. We have characterized the NiMn2O4+δ stoichiometry using quantitative energy-dispersive analysis of X-rays and thermal gravimetry under reducing conditions. Increased oxygen and Mn4+ contents were detected. X-ray diffraction and Rietveld refinement of X-ray data were carried out. Temperature dependent magnetization measurements were performed and the ferri-magnetic transition was identified at ≈100 K. The ferri-magnetic moment was found to be ≈1μB and hysteretic magnetization vs applied field curves were obtained. Dielectric properties were measured using impedance spectroscopy. Two dielectric relaxation processes were detected, which were associated with grain boundary and bulk contributions. The Arrhenius plots of resistivity and the temperature dependent dielectric permittivity were obtained for the two relaxations by means of an equivalent circuit model based on a series of two parallel RC elements.  相似文献   

14.
Ba8CuTa6O24?δ ceramics possess exceptionally high microwave dielectric loss among the eight‐layer twinned hexagonal perovskite Ba8MTa6O24 (M = Zn, Co, Ni, Mg, Cu) analogs. Impedance spectroscopy measurement demonstrates that the eight‐layer Ba8CuTa6O24?δ ceramics show the electrical heterogeneous microstructure, consisting of leaky insulating grains and more resistive grain boundary regions. This induced internal barrier layer capacitance (IBLC) effects on Ba8CuTa6O24?δ ceramics. The heterogeneous electrical microstructure is associated with partial reduction of Cu2+ to Cu+ and oxygen loss during the sintering procedure and limited reoxidization along grain boundary regions on cooling. The existence of Cu+ in Ba8CuTa6O24?δ ceramic is confirmed by X‐ray photoelectron spectroscopy measurement. The leaky insulating bulk property for the Ba8CuTa6O24?δ ceramics is compared with the highly insulating bulk behavior of other low dielectric loss analogs, which indicates that the significant defects of Cu+ and oxygen vacancies are responsible for the high microwave dielectric loss of the Ba8CuTa6O24?δ ceramics.  相似文献   

15.
In this work, the effects of Cu composition on the thermal stability of the dielectric and nonlinear properties of CaCu3+xTi4O12 (?0.2 ≤ x ≤ 0.2) ceramics obtained via a polymer-pyrolysis chemical process were studied. The mean grain sizes of Cu-stoichiometric (x = 0), Cu-deficient (x < 0) and Cu-excess (x > 0) CaCu3+xTi4O12 ceramics were found to be ~3.2, ~3.4 and ~3.7 μm, respectively. Interestingly, very good dielectric properties (0.020 ≤ tanδ ≤ 0.038 and 4000 ≤ ε′ ≤ 7065) were attained in CaCu3+xTi4O12 (?0.2 ≤ x ≤ 0.1, excluding x = 0.2) ceramics. Moreover, the variation of dielectric constant (ε′) within a limit of ±15% (Δε± 15%) over a wide temperature range (TR) of ?70 – 220 °C with low tanδ < 0.05 (tanδ<0.05) over a TR of ?70 to 80 °C were achieved in a CaCu2.8Ti4O12 ceramic. These results suggest that this ceramic could be applicable for X9R capacitors and energy storage devices that require high thermal stability. Additionally, the nonlinear properties of Cu-nonstoichiometric ceramics could be improved when compared with those of the Cu-stoichiometric material. The incremental changes of dielectric and nonlinear properties of CaCu3+xTi4O12 (?0.2 ≤ x ≤ 0.2) ceramics revealed the significant role of Cu composition on grain boundary resistance (Rgb), which was confirmed by impedance spectroscopy analysis. In addition, XANES results revealed the proper ratios of Cu+:Cu2+ and Ti3+:Ti4+ found in these ceramics, indicating the semiconducting behavior of these grains.  相似文献   

16.
《Ceramics International》2016,42(7):8467-8472
Dielectric properties of Ca1−3x/2YbxCu3−yMgyTi4O12 (x=0.05, y=0.05 and 0.30) prepared using a modified sol–gel method and sintered at 1070 °C for 4 h were investigated. The mean grain sizes of the CaCu3Ti4O12 and co-doped Ca0.925Yb0.05Cu3−yMgyTi4O12 (y=0.05 and 0.30) ceramics were ≈15.86, ≈3.37, and ≈2.32 μm, respectively. Interestingly, the dielectric properties can be effectively improved by co-doping with Yb3+ and Mg2+ ions to simultaneously control the microstructure and properties of grain boundaries, respectively. These properties were improved over those of single-doped and un-doped CaCu3Ti4O12 ceramics. A highly frequency−independent colossal dielectric permittivity (≈104) in the range of 102–106 Hz with very low loss tangent values of 0.018–0.028 at 1 kHz were successfully achieved in the co-doped Ca0.925Yb0.05Cu3−yMgyTi4O12 ceramics. Furthermore, the temperature stability of the colossal dielectric response of Ca1−3x/2YbxCu3−yMgyTi4O12 was also improved to values of less than ±15% in the temperature range from −70 to 100 °C.  相似文献   

17.
《Ceramics International》2016,42(11):13242-13247
Considering the contribution of the mixed valence structure of Ti3+ and Ti4+ to the semiconductivity of grain, compositions with the formula of Y2/3Cu3Ti4+xO12 were designed and prepared. The dielectric bulk responses of Y2/3Cu3Ti4+xO12 ceramics were explored in detail. Changing Ti stoichiometry gives rise to an increase of the intrinsic permittivity. Y2/3Cu3Ti3.925O12 ceramic exhibits a higher intrinsic permittivity of ~120 at 60 MHz than that of pure Y2/3Cu3Ti4O12 ceramics (87 at 60 MHz). Additionally, the activation energies of bulk responses are significantly enhanced by changing Ti stoichiometry, which is closely linked with the increase of Ti3+/Ti4+.  相似文献   

18.
In this work, the Mg2-xCuxSiO4(x = 0–0.40) microwave dielectric ceramics were prepared using solid-state reaction method. Compared with the Mg2SiO4 sample, the Cu-substituted Mg samples could be sintered at a lower temperature. The Mg2?xCuxSiO4 ceramics exhibit the composite phases of Mg2SiO4 and a small quantity of MgSiO3. The Cu2+ ion presented a solid solution with the Mg2SiO4 phase and preferentially occupy Mg(1) site. The distortion of MgO6 octahedron was modified by Cu2+ ions, resulting in a positive change in the temperature coefficient of resonance frequency (τf) values. Excellent microwave dielectric properties of εr = 6.35, high Qf of  188,500 GHz and near zero τf = ?2.0 ppm/°C were achieved at x = 0.08 under sintering at 1250 °C for 4 h. Thus, the fabricated ceramics were considered as possible candidates for millimeter-wave device applications.  相似文献   

19.
《Ceramics International》2015,41(8):9361-9372
We studied the effect of Barium doping on the structural and electrical properties of SrBi4Ti4O15 (SBBT) ferroelectric ceramic. The samples were synthesized by the conventional solid-state reaction method. X-ray diffraction (XRD) and Raman scattering techniques have been employed to characterize the structural property. Scanning electron microscope images showed plate like grain morphology with random orientation of platelets. Lower Curie temperature and enhanced dielectric constant at the transition temperature were clearly observed with increasing the concentration of Ba2+ ion. Detailed studies on the effect of barium on electrical behavior of the SBBT systems have been carried out by the non destructive complex impedance spectroscopy (CIS technique). The Nyquist plots suggest that the grain and grain boundary were responsible in the conduction mechanism of the materials. Ferroelectric measurements revealed that Ba2+ doping leads to reduction in the remnant polarization. The piezoelectric coefficients (d33) of the ceramics were enhanced with Ba2+ doping.  相似文献   

20.
The improved dielectric properties and voltage‐current nonlinearity of nickel‐doped CaCu3Ti4O12 (CCNTO) ceramics prepared by solid‐state reaction were investigated. The approach of A′‐site Ni doping resulted in improved dielectric properties in the CaCu3Ti4O12 (CCTO) system, with a dielectric constant ε′≈1.51×105 and dielectric loss tanδ≈0.051 found for the sample with a Ni doping of 20% (CCNTO20) at room temperature and 1 kHz. The X‐ray photoelectron spectroscopy (XPS) analysis of the CCTO and the specimen with a Ni doping of 25% (CCNTO25) verified the co‐existence of Cu+/Cu2+ and Ti3+/Ti4+. A steady increase in ε′(f) and a slight increase in α observed upon initial Ni doping were ascribed to a more Cu‐rich phase in the intergranular phase caused by the Ni substitution in the grains. The low‐frequency relaxation leading to a distinct enhancement in ε′(f) beginning with CCNTO25 was confirmed to be a Maxwell‐Wagner‐type relaxation strongly affected by the Ni‐related phase with the formation of a core‐shell structure. The decrease of the dielectric loss was associated with the promoted densification of CCNTO and the increase of Cu vacancies, due to Ni doping on the Cu sites. In addition, the Ni dopant had a certain effect on tuning the current‐voltage characteristics of the CCTO ceramics. The present A′‐site Ni doping experiments demonstrate the extrinsic effect underlying the giant dielectric constant and provides a promising approach for developing practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号