首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
化学工业   5篇
一般工业技术   1篇
  2020年   1篇
  2017年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
排序方式: 共有6条查询结果,搜索用时 531 毫秒
1
1.
The dielectric and non‐Ohmic properties of Na1/2Y1/2Cu3Ti4O12 ceramics sintered under various conditions to obtain different microstructures were investigated. Microstructure analysis confirmed the presence of Na, Y, Cu, Ti, and O and these elements were well dispersed in the microstructure. Na1/2Y1/2Cu3Ti4O12 ceramics exhibited non‐Ohmic characteristics with large nonlinear coefficients of about 5.7–6.6 irrespectively of sintering conditions. The breakdown electric field of fine‐grained ceramic with the mean grain size of ≈1.7 μm (≈5600 V/cm) was much larger than those of the course‐grained ceramics with grain sizes of ≈9.5–10.4 μm (≈1850–2180 V/cm). Through optimization of sintering conditions, a low loss tangent of about 0.03 and very high dielectric permittivities of 18 000–23 000 with good temperature stability were successfully accomplished. The electrical responses of the grains and grain boundaries can, respectively, be well described using admittance and impedance spectroscopy analyses based on the brickwork layer model. A possible mechanism for the origin of semiconducting grains is discussed. The colossal dielectric response was reasonably described as closely correlated with the electrically heterogeneous microstructure by means of strong interfacial polarization at the insulating grain‐boundary layers. The non‐Ohmic properties of Na1/2Y1/2Cu3Ti4O12 ceramics were primarily related to their microstructure, i.e., grain size and volume fraction of grain boundaries.  相似文献   
2.
The effects of Ta5+ substitution on the microstructure, electrical response of grain boundary, and dielectric properties of CaCu3Ti4O12 ceramics were investigated. The mean grain size decreased with increasing Ta5+ concentration, which was ascribed to the ability of Ta5+ doping to inhibit grain boundary mobility. This can decrease dielectric constant values. Grain boundary resistance and potential barrier height of CaCu3Ti4O12 ceramics were reduced by doping with Ta5+. This results in enhancement of dc conductivity and the related loss tangent. Influence of charge compensations on microstructure and intrinsic electrical properties of grain boundaries resulting from the effects of replacing Ti4+ with Ta5+ are discussed. The experimental data and variation caused by the substitution of Ta5+ can be described well by the internal barrier layer capacitor model based on space charge polarization at the grain boundaries.  相似文献   
3.
Dielectric and nonlinear properties of a binary compound derived from Ca2Cu2Ti4O12 were greatly improved by doping with Zn2+ to deliberately create CaCu3–xZnxTi4O12/CaTiO3 composites. Ca2Cu1.8Zn0.2Ti4O12 composition can exhibit an enhanced ε′, ~6,513, with a strong reduction in tanδ to ~0.015 (at 1 kHz). The nonlinear coefficient and breakdown field strength were significantly enhanced. The dielectric and nonlinear properties were described based on the effect of Zn2+ substitution on electrical response of internal interfaces.  相似文献   
4.
Influences of La3+ substitution on the dielectric properties and formation of Schottky barriers at internal interfaces of a Ca2Cu2Ti4O12 (CaTiO3/CaCu3Ti4O12) composite system were investigated. It was found that electrostatic potential barrier height was greatly reduced by doping with La3+, leading to a large decrease in the total resistance of internal interfaces between grains. This observation was attributed to the creation of conduction electrons, which were possibly induced by electrical charge compensation of La3+ substitution into Ca2+ sites. Variations in the dielectric properties of La3+-doped CaTiO3/CaCu3Ti4O12 composite ceramics and nonlinear properties can be described based on the electrical responses at the internal interfaces between CaCu3Ti4O12–CaCu3Ti4O12 grains and CaTiO3–CaCu3Ti4O12 grains. Influence of possible charge compensation due to different levels of La3+ dopant on the formation of potential barriers was discussed.  相似文献   
5.
The influences of Ga3+ doping ions on the microstructure, dielectric and electrical properties of CaCu3Ti4O12 ceramics were investigated systematically. Addition of Ga3+ ions can cause a great increase in the mean grain size of CaCu3Ti4O12 ceramics. This is ascribed to the ability of Ga3+ doping to enhance grain boundary mobility. Doping CaCu3Ti4O12 with 0.25 mol% of Ga3+ caused a large increase in its dielectric constant from 5439 to 31,331. The loss tangent decreased from 0.153 to 0.044. The giant dielectric response and dielectric relaxation behavior can be well described by the internal barrier layer capacitor model based on Maxwell?Wagner polarization at grain boundaries. The nonlinear coefficient, breakdown field, and electrostatic potential barrier at grain boundaries decreased with increasing Ga3+ content. Our results demonstrated the importance of ceramic microstructure and electrical responses of grain and grain boundaries in controlling the giant dielectric response and dielectric relaxation behavior of CaCu3Ti4O12 ceramics.  相似文献   
6.
Giant dielectric behavior and electrical properties of monovalent cation/anion (Li+, F) co-doped CaCu3Ti4O12 ceramics prepared by a solid-state reaction route were systematically investigated. Substitution of Li+ and F led to a significantly enlarged mean grain size. A reduced loss tangent (tanδ ~0.06) with the retainment of an ultra-high dielectric permittivity (ε′ ~7.7-8.8 × 104) was achieved in the co-doped ceramics, while the breakdown electric field and nonlinear coefficient of CaCu3Ti4O12 ceramics were increased by co-doping with (Li+, F). The variations in nonlinear electrical properties and giant dielectric response, as well as the dielectric relaxation, were well explained by the Maxwell-Wagner polarization model for an electrically heterogeneous microstructure, in which a Schottky barrier height at the grain boundaries (GBs) was formed. ε′ was closely correlated to the GB capacitance. Significantly decreased tanδ value and enhanced nonlinear properties were related to a significant increase in the GB resistance, which was attributed to the significantly increased potential barrier height and conduction activation energy at the GBs. The semiconducting nature of the grains was also studied using X-ray photoelectron spectroscopy and found to originate from the presence of Cu+ and Ti3+ ions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号