首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
高浓度表面活性物质的分离是泡沫分离过程的难题,也是制约泡沫分离技术应用于工业化生产的瓶颈.为了解决高浓度表面活性物质泡沫分离的难题,以阴离子表面活性剂十二烷基硫酸钠(SDS)水溶液为体系,研究了在其临界胶束浓度(CMC)附近时,温度对SDS水溶液气泡直径、泡沫稳定性、富集比及回收率的影响.结果表明:温度对高浓度表面活性物质的泡沫分离有显著影响.当SDS水溶液浓度分别为1.2、2.3、3.5g·L-1,温度从30℃升高到70℃时,泡沫稳定性先增大后减小,在pH 6.9、表观气速2.4×10-3 m·s-1、装液量200 mL的操作条件下,气泡直径先减小后增大,富集比提高了3~5倍,回收率降低了34%~65%.  相似文献   

2.
在水溶液中,相当一部分色素在一定条件下带正电荷或负电荷,因此文中以水溶液中的铜离子为色素研究体系,十二烷基硫酸钠(SDS)为起泡剂,探索泡沫分离法脱除水溶液中离子色素的工艺。单因素实验研究了铜离子色素脱除率和富集比随pH值、鼓泡气体流量、表面活性剂质量浓度及泡沫塔装液量的变化规律和机理,结果表明,十二烷基硫酸钠对泡沫分离法脱除铜离子色素具有良好的效果。在此基础上通过正交实验得到最佳操作工艺为:pH值5.0,气体流量80 mL/min,表面活性剂质量浓度0.15 g/L,装液量220 mL,此工艺下铜离子色素脱除率为99.4%,富集比为20.8。  相似文献   

3.
《分离科学与技术》2012,47(3):469-475
The purpose of this study was to investigate the use of foam fractionation to recover saikosaponins. First, the solvent extraction method was applied for the extraction of saikosaponins from radix bupleuri using ethanol or deionized water. Then, the foam fractionation technique in batch mode was used for the recovery of the total saikosaponins from the extract. The effects of initial concentration, air flow rate, liquid loading volume, pH, and operating time on the process performance were investigated. The recovery percentage 77.2% and an enrichment ratio 3.68 of total saikosaponins with one-stage separation were obtained under the optimal conditions of initial saikosaponin concentration 0.18 mg/mL, air flow rate 50 mL/min, liquid loading volume 200 mL, pH 5.5, and operating time of 2 h. A two-stage foam fractionation technology was also designed, which was effective for improving both the recovery percentage and enrichment ratio simultaneously.  相似文献   

4.
In order to recovery whey protein from yak whey wastewater effectively, a facile method of foam separation to be suitable for the local nomadic herdsmen in Qinghai-Tibet Plateau has been established in this research. The effects of the four factors, protein concentration, gas velocity, temperature and pH, on the performance of foam separation were investigated. Based on the single factor experiments, the response surface software was adopted to optimize and to investigate conditions of foam separation for whey protein, and the optimal conditions were found to be protein concentration of 120 μg/mL, gas velocity of 310 mL/min, temperature of 41°C and pH of 3.8, respectively. The as-obtained results of verification experiments, recovery percentage 88.3% and enrichment ratio 9.25 showed that foam separation technique was a simple equipment and environmental compatibility method to separate whey protein from yak whey wastewater.  相似文献   

5.
泡沫浮选法处理含铬废水的试验研究   总被引:1,自引:0,他引:1  
本实验采用泡沫浮选技术脱除废水中的Cr^3 ,用十二烷基硫酸钠(SDS)作表面活性剂,Fe(OH)3作絮凝剂,得到间歇操作流程适宜的操作参数为:溶液pH值为5.5左右,SDS为180mg/L,气体流量800mL/min。在此操作条件下,Cr^3 的脱除率可达97%左右。  相似文献   

6.
《分离科学与技术》2012,47(7):867-886
ABSTRACT

The recovery of Co(II) ions from aqueous solutions under acidic conditions (pH 5) was investigated in flotation columns with inside diameters of 4.0 and 8.0 cm. Three surfactants, dodecylamine, cetyl pyridinium chloride, and sodium dodecyl sulfate, were used as collectors. Sodium dodecyl sulfate was found to be the most efficient; all three, however, produced hydrated froths, leading to rather low recoveries and separation efficiencies. The volumetric gas flow rate was found to affect the process in relation to the amount of surfactant added and the column diameter. The scale-up of the column should be done in terms of the same superficial gas velocity in order to maintain similar levels of metal ion recovery.  相似文献   

7.
Natural gas foam can be used for mobility control and channel blocking during natural gas injection for enhanced oil recovery, in which stable foams need to be used at high reservoir temperature, high pressure and high water salinity conditions in field applications. In this study, the performance of methane (CH4) foams stabilized by different types of surfactants was tested using a high pressure and high temperature foam meter for surfactant screening and selection, including anionic surfactant (sodium dodecyl sulfate), non-anionic surfactant (alkyl polyglycoside), zwitterionic surfactant (dodecyl dimethyl betaine) and cationic surfactant (dodecyl trimethyl ammonium chloride), and the results show that CH4-SDS foam has much better performance than that of the other three surfactants. The influences of gas types (CH4, N2, and CO2), surfactant concentration, temperature (up to 110°C), pressure (up to 12.0 MPa), and the presence of polymers as foam stabilizer on foam performance was also evaluated using SDS surfactant. The experimental results show that the stability of CH4 foam is better than that of CO2 foam, while N2 foam is the most stable, and CO2 foam has the largest foam volume, which can be attributed to the strong interactions between CO2 molecules with H2O. The foaming ability and foam stability increase with the increase of the SDS concentration up to 1.0 wt% (0.035 mol/L), but a further increase of the surfactant concentration has a negative effect. The high temperature can greatly reduce the stability of CH4-SDS foam, while the foaming ability and foam stability can be significantly enhanced at high pressure. The addition of a small amount of polyacrylamide as a foam stabilizer can significantly increase the viscosity of the bulk solution and improve the foam stability, and the higher the molecular weight of the polymer, the higher viscosity of the foam liquid film, the better foam performance.  相似文献   

8.
杨全文  吴兆亮  殷昊  谭颖 《化工学报》2011,62(4):1000-1005
引言 泡沫分离技术又称泡沫吸附分离技术[1],是以气泡作为分离介质,利用被分离组分在气液两相界面吸附性质的差异进行浓缩溶液中表面活性组分.在泡沫分离过程中,通过空气分布器在泡沫塔液相中产生气泡,气泡沿着轴向向上流动,被分离表面活性组分吸附在气泡的气液两相界面上,当吸附接近平衡后,气泡离开液相,在液相上方形成泡沫相.  相似文献   

9.
Foaming properties of surfactin were investigated and compared to those of sodium dodecyl sulfate (SDS) and bovine serum albumin (BSA). Foams were formed by a bubbling technique. Evolution of the foam volume and the liquid in the foam was monitored with optical and conductimetric methods to characterize foam formation and stability. Excellent foaming properties of surfactin were shown by its higher ability to form and stabilize the foam at a concentration as low as 0.05 mg/mL, in comparison with SDS and BSA. Surfactin produced a foam with intermediate maximum density and stabilized the liquid in foam, as well as BSA.  相似文献   

10.
The separation of oily contaminants out of aqueous/non-aqueous phases using foam fractionation with a surfactant was investigated. In the separation of the light oil (hexadecane), the eluted amount of oil and the o/w (oil/water) ratio increased with the weight percentage of SDS (sodium dodecyl sulfate); and the ratio actually remained the same above the CMC (critical micelle concentration) point (0.23 wt% of SDS). Most of the oil was eluted even at 49:1 initial o/w ratio with the surfactant. For the heavy oil (carbon tetrachloride), the eluted o/w ratio and the oil recovery had maxima at 0.05 and 0.1 wt% of SDS solution, respectively, even though the overall recovery of 20–30 % was much lower than that of 80–100 % in the light oil. It was speculated that emulsion formation might affect oil entrapment in the foams. Higher gas flow rates, in general, increased the oil recovery, but did not increase the o/w ratio in the effluents.  相似文献   

11.
Aqueous surfactant-assisted extraction (ASE) has been proposed as an alternative to n-hexane for extraction of vegetable oil; however, the use of inexpensive surfactants such as sodium dodecyl sulfate (SDS) and the effect of ASE on the quality of biodiesel from the oil are not well understood. Therefore, the effects on total oil extraction efficiency of surfactant concentration, extraction time, oilseed to liquid ratio and other parameters were evaluated using ASE with ground canola and SDS in aqueous solution. The highest total oil extraction efficiency was 80 %, and was achieved using 0.02 M SDS at 20 °C, solid–liquid ratio 1:10 (g:mL), 1,000 rpm stirring speed and 45 min contact time. Applying triple extraction with three stages reduced the amount of SDS solution needed by 50 %. The ASE method was scaled up to extract 300 g of ground canola using the best combination of extraction conditions as described above. The extracted oil from the scale-up of the ASE method passed the recommendation for biodiesel feedstock quality with respect to water content, acid value and phosphorous content. Water content, kinematic viscosity, acid value and oxidative stability index of ASE biodiesel were within the ASTM D6751 biodiesel standards.  相似文献   

12.
采用自制的内循环泡沫浮选塔处理含铬废水,考察pH值、Fe(NO3)3浓度、十二烷基硫酸钠(SDS)浓度、气体流量、分离时间等因素对分离效率的影响,并与常规泡沫塔比较. 结果表明,在12~35 min内,内循环式浮选塔分离效率更高,35 min时塔内铬离子浓度为0.6 mg/L,常规泡沫塔内铬离子浓度为10 mg/L. 内循环浮选塔最佳分离工艺条件为,对初始铬浓度为20 mg/L的废水,在pH 5.5、SDS 100 mg/L、Fe(NO3)3 60 mg/L、气体流量800 mL/min条件下处理效果最好,泡沫夹带率约为10%,Cr(III)脱除率可达97%以上.  相似文献   

13.
泡沫分离法处理结晶紫染料废水的工艺   总被引:3,自引:0,他引:3  
以结晶紫模拟染料废水为研究体系,对泡沫分离法脱除结晶紫染料废水色素的工艺进行了研究,考察了以表面活性剂十二烷基苯磺酸钠(SDBS)为捕收剂时,pH、气体流速、表面活性剂浓度、装液量对脱色效果的影响,利用正交实验确定了优化操作条件. 结果表明,当pH为11.0、气速0.018 m3/h、SDBS浓度450 mg/L、装液量500 mL时,富集比为10.3,废水中结晶紫脱色率为93.5%.  相似文献   

14.
泡沫分离法提取乙醇水体系中甲基橙   总被引:2,自引:0,他引:2  
采用泡沫分离法对含甲基橙的乙醇水溶液进行了提取研究. 考察了乙醇体积分数、气体流量、pH、甲基橙浓度和表面活性剂浓度对提取效果的影响,并对泡沫分离乙醇-水体系中提取中药有效成分的可行性进行了探讨. 结果表明,以十六烷基三甲基溴化铵(CTAB)为表面活性剂,在乙醇体积分数25%的乙醇-水体系中,在pH 6.0、气速80 mL/min、甲基橙浓度35 mg/L及CTAB浓度80 mg/L的操作条件下,甲基橙的富集比为14.38,回收率在98.5%以上. 在一定范围内提高表面活性剂浓度或加入稳泡剂以削弱乙醇的消泡作用,从而将泡沫分离技术应用于乙醇-水体系中中药有效成分的提取是可能的.  相似文献   

15.
《分离科学与技术》2012,47(14):3117-3130
Abstract

Surfactant enhanced carbon regeneration (SECR) was employed to regenerate a polymeric resin saturated with trichloroethylene (TCE), using an aqueous solution of the anionic surfactant sodium dodecyl sulfate (SDS). More than 95% of the sorbed TCE was removed in the desorption operation with a 0.1 M SDS solution at a superficial flow rate of 1 cm/min. The desorption rate of TCE from pores of the resin is limited by the concentration of SDS in the regenerant and its flow rate. From the breakthrough curve of the subsequent adsorption cycle without a flushing step following the desorption, only 40% of the effective adsorption capacity of the virgin resin is observed for the regenerated resin. With a water flushing step following the surfactant regeneration step, the effective adsorption capacity is significantly improved to about 60% of that of the virgin resin. Thermal gravimetric analysis indicates that the reduction in the effective adsorption capacity of regenerated resin resulted from the residual SDS remaining in the pores of the resin. The regeneration step is equilibrium limited whereas the water flushing step is rate limited under the studied conditions. Despite the loss of subsequent cycle adsorption capacity, SECR may still be economical as an in‐situ, low temperature regeneration method.  相似文献   

16.
Process industries generate a large amount of waste materials during either production or downstreaming operations. Among many methods available for their separation, foam separation plays a major role, especially when the concentration of undesirable components involved is very low. The success of this technique depends on the stability and characteristics of the foam. This operation is simple with less maintenance as there are no moving parts. In the present study, simultaneous removal of metal ions such as chromium (VI), copper (II), and zinc (II) from electroplating industrial effluent was carried out with sodium lauryl sulfate (SLS) as surfactant in continuous foam column. Enrichment ratios of 3.94, 4.05, and 7.96 with a percentage removal of 59.0%, 63.0%, and 99.2% were obtained for chromium (VI), copper (II), and zinc (II) ions respectively at the optimum operating parameters of 23 cm liquid pool height in column, 0.1 liter per minute (Lpm) of airflow rate, feed flow rate of 4 liters per hour (Lph), 0.1% (w/v) of SLS concentration, pH of 6.0, and at feed concentrations of 32.5, 27.0, and 23.0 ppm for chromium (VI), copper (II), and zinc (II) ions respectively. Enrichment ratio was found to increase with an increase in feed flow rate. With a decrease in concentration of the bulk solution, the separation factor was found to increase. The study indicates the feasibility of continuous foam separation for treating industrial effluents.  相似文献   

17.
《分离科学与技术》2012,47(15):3333-3349
Abstract

Coal‐based granular activated carbon (GAC) is saturated with trichloroethylene (TCE) by passing air through a fix bed adsorber. In surfactant‐enhanced carbon regeneration, an aqueous solution of anionic surfactant, sodium dodecyl sulfate (SDS), is passed through the bed to induce desorption of TCE. More than 95% of the sorbed TCE was removed in the desorption operation with a 0.1 M SDS solution at a superficial flow rate of 1 cm/min. The desorption rate of TCE from pores of GAC is limited by pore diffusion and not significantly affected by either the concentration of SDS in the regenerant (when well above the critical micelle concentration) or its flow rate. From the breakthrough curve of a subsequent adsorption cycle without a flushing step following the desorption, only 7% of the virgin carbon effective adsorption capacity is observed for the regenerated carbon. With a water flushing step following the regeneration step, the effective adsorption capacity is significantly improved to about 15% of that of virgin carbon. Increased temperature of the flushing water also enhances the effective adsorption capacity of the regenerated GAC. Separate batch adsorption‐desorption isotherms of SDS on GAC support the enhanced desorption of SDS at elevated temperatures. The drastic reduction in the effective adsorption capacity of regenerated GAC results from the residual SDS remaining in the pores of GAC as confirmed by thermal gravimetric analysis. Both the regeneration and water flush steps are rate limited under conditionsused here.  相似文献   

18.
《分离科学与技术》2012,47(10):1673-1683
A multistage ion foam fractionation column with bubble-cap trays was employed to study the removal of cadmium ions from simulated wastewater having low Cd concentrations (10–30 mg/L), examining the effects of foam height, air flow rate, feed flow rate, and feed Cd concentration. Sodium dodecyl sulfate (SDS) was used to generate foam in this study. An increase in foam height, which reduces liquid hold-up in the generated foam, resulted in the enhancement of the enrichment ratios of both SDS and Cd while the removal and residual factor of Cd showed insignificant change. An increase in air flow rate increased the foam generation rate, foamate volumetric ratio, and the removal efficiency of Cd but decreased the enrichment ratios of both Cd and SDS. The separation factors of both Cd and SDS decreased with increasing feed flow rate, which is mainly attributable to both the effects of the enhancement of foamate volumetric ratio and the increases in both SDS and Cd input rates. An increase in feed Cd concentration was found to increase Cd effluent concentration and SDS removal but to decrease the enrichment ratios of both Cd and SDS because of the increasing liquid entrainment in the produced foam.  相似文献   

19.
Demands for phosphoric acid are growing rapidly in various industries. This has highlighted the importance of optimizing its production and purification methods. Phosphoric acid can be produced by a wet process. However, due to the presence of many organic and inorganic impurities in the wet product, purification of the resulting product is a major concern in this industry. Removal of trace metal impurities (such as magnesium, cadmium, chromium, zinc, etc.) from produced phosphoric acid in a wet process was investigated by foam fractionation in a semi-batch setup using sodium dodecyl sulfate (SDS) as the surfactant. Effects of inlet air velocity, surfactant concentration, and surfactant selectivity were investigated. The optimum air velocity and surfactant concentration were obtained as 0.020 cm/min and 0.7 g/L, respectively. At the optimum condition, the total removal efficiency and enrichment factor reached were 70.2% and 4.39, respectively, while the acid loss was 8.3%. The total metal removal efficiency was increased to 95.3% in a two-stage experimental run.  相似文献   

20.
An experimental investigation is presented of the foam separation of colloidal ferric oxide over the pH range 3 to 12 by using an anionic and a cationic surfactant. A sol containing 1.67 mmole/ liter (93 mg/liter) of trivalent iron can be reduced in concentration to 0.09 mmole/liter by 0.17 mmole/liter dodecyl sodium sulfate (anionic) over pH 4.5 to 8; and to 0.18 mmole/liter by 0.17 mmole/liter ethylhexadecyldimethylammonium bromide (cationic) over pH 10 to 12. Soluble iron species produce poorer separations. Between pH 8 and pH 10 the charge of the colloid is reversed from positive to negative, and for an efficient separation a two-step process should be used, first with an anionic surfactant and then with a cationic. The charge of the particulates has little effect on the foam separation of the surfactants although the presence of the particulates has a significant effect, as evidenced by residual surfactant concentrations and collapsed foam volumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号