首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To understand the self sustained propagation of the plasma jet/bullet in air under atmospheric pressure, the ignition of the plasma jet/bullet, the plasma jet/bullet ignition point in the plasma pencil, the formation time and the formation criteria from a dielectric barrier configured plasma pencil were investigated in this study. The results were confirmed by comparing these results with the plasma jet ignition process in the plasma pencil without a dielectric barrier. Electrical, optical, and imaging techniques were used to study the formation of the plasma jet from the ignition of discharge in a double dielectric barrier configured plasma pencil. The investigation results show that the plasma jet forms at the outlet of the plasma pencil as a donut shaped discharge front because of the electric field line along the outlet’s surface. It is shown that the required time for the formation of the plasma jet changes with the input voltage of the discharge. The input power calculation for the gap discharge and for the whole system shows that 56% of the average input power is used by the first gap discharge. The estimated electron density inside the gap discharge is in the order of 1011cm-3 . If helium is used as a feeding gas, a minimum 1.48×10-8C charge is required per pulse in the gap discharge to generate a plasma jet.  相似文献   

2.
Atmospheric pressure non-thermal plasma is of interest for industrial applications.In this study,polypropylene (PP) films are modified by a dielectric barrier discharge (DBD) with a non-uniform magnetic field in air at atmospheric pressure.The surface properties of the PP films before and after a DBD treatment are studied by using contact angle measurement,atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS).The effect of treatment time on the surface modification with and without a magnetic field is investigated.It is found that the hydrophilic improvement depends on the treatment time and magnetic field.It is also found that surface roughness and oxygen-containing groups are introduced onto the PP film surface after the DBD treatment.Surface roughness and oxygen-containing polar functional groups of the PP films increase with the magnetic induction density.The functional groups are identified as C-O,C=O and O-C=O by using XPS analysis.It is concluded that the hydrophilic improvement of PP films treated with a magnetic field is due to a greater surface roughness and more oxygen-containing groups.  相似文献   

3.
We study the dispersion properties of surface plasmon (SP) oscillations in a semi-bounded semiconductor plasma with the effects of the Coulomb exchange (CE) force associated with the spin polarization of electrons and holes as well as the effects of the Fermi degenerate pressure and the quantum Bohm potential.Starting from a quantum hydrodynamic model coupled to the Poisson equation,we derive the general dispersion relation for surface plasma waves.Previous results in this context are recovered.The dispersion properties of the surface waves are analyzed in some particular cases of interest and the relative influence of the quantum forces on these waves are also studied for a nano-sized GaAs semiconductor plasma.It is found that the CE effects significantly modify the behaviors of the SP waves.The present results are applicable to understand the propagation characteristics of surface waves in solid density plasmas.  相似文献   

4.
This paper is aimed to show the influence of initial chemical pretreatment prior to subsequent plasma activation of aluminum surfaces.The results of our study showed that the state of the topmost surface layer(i.e.the surface morphology and chemical groups)of plasma modified aluminum significantly depends on the chemical precleaning.Commonly used chemicals(isopropanol,trichlorethane,solution of Na OH in deionized water)were used as precleaning agents.The plasma treatments were done using a radio frequency driven atmospheric pressure plasma pencil developed at Masaryk University,which operates in Ar,Ar/O2 gas mixtures.The effectiveness of the plasma treatment was estimated by the wettability measurements,showing high wettability improvement already after 0.3 s treatment.The effects of surface cleaning(hydrocarbon removal),surface oxidation and activation(generation of OH groups)were estimated using infrared spectroscopy.The changes in the surface morphology were measured using scanning electron microscopy.Optical emission spectroscopy measurements in the near-to-surface region with temperature calculations showed that plasma itself depends on the sample precleaning procedure.  相似文献   

5.
The present work deals with the change in surface properties of polyethylene (PE) film using DC low pressure glow discharge air plasma and makes it useful for technical applications. The change in hydrophilicity of the modified PE film surface was investigated by measuring contact angle and surface energy as a function of exposure time. Changes in the morphological and chemical composition of PE films were analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The improvement in adhesion was studied by measuring T-peel and lap-shear strength. The results show that the wettability and surface energy of the PE film has been improved due to the introduction of oxygen-containing polar groups and an increase in surface roughness. The XPS result clearly shows the increase in concentration of oxygen content and the formation of polar groups on the polymer surface. The AFM observation on PE film shows that the roughness of the surface increased due to plasma treatment. The above morphological and chemical changes enhanced the adhesive properties of the PE film surfaces, which was confirmed by T-peel and lap-shear tests.  相似文献   

6.
In this paper an argon filled coaxial dielectric barrier discharge (DBD) has been studied to understand the detail of power transfer from a unipolar square pulse to plasma during discharge. A dielectric barrier discharge based diffuse pulse discharge and its electrical characteristics are investigated. A quartz coaxial DBD tube filled at different pressures is used in the experiment. A unipolar pulse voltage of different peak voltages and frequencies has been applied to the discharge electrodes for the generation of microdischarges. Two current pulses are used for two consecutive discharges per applied voltage pulse. The second discharge, which occurs at the falling flank of the voltage pulse, is induced by the charges stored on the dielectric barrier during the first discharge. It has been deduced that the power supplied to ignite the first discharge is partly stored to ignite the second discharge when the applied voltage decays. This process ultimately leads to much improved power transfer to the plasma. The knowledge obtained from dynamic processes of the DBDs in the discharge gap explains quantitatively the mechanism of ignition, development and extinction of the DBDs.  相似文献   

7.
A model coupling the plasma with a cathode body is applied in the simulation of the diffuse state of a magnetically rotating arc.Four parametric studies are performed:on the external axial magnetic field (AMF),on the cathode shape,on the total current and on the inlet gas velocity.The numerical results show that:the cathode attachment focuses in the center of the cathode tip with zero AMF and gradually shifts off the axis with the increase of AMF;a larger cathode conical angle corresponds to a cathode arc attachment farther away off axis;the maximum values of plasma temperature increase with the total current;the plasma column in front of the cathode tip expands more severely in the axial direction,with a higher inlet speed;the cathode arc attachment shrinks towards the tip as the inlet speed increases.The various results are supposed to be explained by the joint effect of coupled cathode surface heating and plasma rotating flow.  相似文献   

8.
Plasma surface modification of the inner wall of a slender tube is quite difficult to achieve using conventional means. In the work described here, an inner coaxial radio frequency (RF) copper electrode is utilized to produce the plasma and also acts as the sputtered target to deposit copper films in a tube. The influence of RF power, gas pressure, and bias voltage on the distribution of plasma density and the uniformity of film thickness is investigated. The experimental results show that the plasma density is higher at the two ends and lower in the middle of the tube. A higher RF power and pressure as well as larger tube bias lead to a higher plasma density. Changes in the discharge parameter only affect the plasma density uniformity slightly. The variation in the film thickness is consistent with that of the plasma density along the tube axis for different RF power and pressure. Although the plasma density increases with higher tube biases, there is an optimal bias to obtain the highest deposition rate. It can be attributed to the reduction in self-sputtering of the copper electrode and re-sputtering effects of the deposited film at higher tube biases.  相似文献   

9.
The velocity of critical surface at microwave band in laser-induced plasma was measured and the results are presented. The results indicate that the velocity of critical surface with low electron density is larger than that with the high one; and the velocity of critical surface increases with the laser power density.  相似文献   

10.
It is known that gas flow rate is a key factor in controlling industrial plasma processing. In this paper, a 2D PIC/MCC model is developed for an rf hollow cathode discharge with an axial nitrogen gas flow. The effects of the gas flow rate on the plasma parameters are calculated and the results show that: with an increasing flow rate, the total ion(N+2, N+) density decreases, the mean sheath thickness becomes wider, the radial electric field in the sheath and the axial electric field show an increase, and the energies of both kinds of nitrogen ions increase;and, as the axial ion current density that is moving toward the ground electrode increases, the ion current density near the ground electrode increases. The simulation results will provide a useful reference for plasma jet technology involving rf hollow cathode discharges in N2.  相似文献   

11.
To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osseointegration and reduce Ni ion release in vitro.  相似文献   

12.
Epoxy resin (EP) tends to accumulate a large amount of charge on its surface when exposed to a high-voltage DC electric field,which leads to a reduction in its insulative performance and an increase in potential safety risks in power systems.To suppress charge accumulation,improve the flashover voltage of the EP,and reduce the risk of gas insulated switchgear (GIS)/gas insulated transmission line (GIL) failure,we used two plasma-etching methods,i.e.,atmospheric-pressure dielectric barrier discharge (DBD) and the atmospheric-pressure plasma jet(APPJ),to modify the surface of the EP.The surface morphology and electrical properties of the modified materials were explored as a function of time.The results show that after DBD treatment,the roughness of the sample increases by 103.9 nm,the conductivity increases by3.9?×?10~(–18)S,and the flashover voltage increases by 14.4%;after APPJ treatment,the roughness of the sample increases by 223.5 nm,the conductivity increases by 3.4?×?10~(–17)S,and the flashover voltage increases by 18%.This shows that both plasma-etching methods can improve the insulation properties of materials by improving the surface-charge characteristics.The two methods are compared with each other:the APPJ treatment method is better at improving the surface roughness and electrical properties of materials,and this flexible treatment method has greater potential in industrial applications.  相似文献   

13.
In this work, a computational modeling study on the mechanism of the acceleration behavior of a plasma bullet in needle-plane configuration is presented. Above all, in our model,two sub-models of time-dependent plasma dynamics and laminar flow are connected using a oneway coupled method, and both the working gas and the surrounding gas around the plasma jet are assumed to be the same, which are premixed He/N_2 gas. The mole fractions of the N_2(NMF)ingredient are set to be 0.01%, 0.1% and 1% in three cases, respectively. It is found that in each case, the plasma bullet accelerates with time to a peak velocity after it exits the nozzle and then decreases until getting to the treated surface, and that the velocity of the plasma bullet increases at each time moment with the peak value changing from 0.72×10~6m/s to 0.80×10~6m/s but then drops more sharply when the NMF varies from 0.01% to 1%. Besides, the electron impact ionizations of helium neutrals and nitrogen molecules are found to have key influences on the propagation of a plasma bullet instead of the penning ionization.  相似文献   

14.
The interaction of laser-induced plasma and bow shock over a blunt body is inves-tigated numerically in an M∞ =6.5 supersonic flow.A ray-tracing method is used for simulating the process of laser focusing.The gas located at the focused zone is ionized and broken down and transformed into plasma.In a supersonic flow the plasma moves downstream and begins to interact with the bow shock when it approaches the surface of the blunt body.The parameters of flowfield and blunt body surface are changed due to the interaction.By analyzing phenomena occurring in the complex unsteady flowfield during the interaction in detail,we can better under-stand the change of pressure on the blunt body surface and the mechanism of drag reduction by laser energy deposition.The results show that the bow shock is changed into an oblique shock due to the interaction of the laser-induced low-density zone with the bow shock,so the wave drag of the blunt body is reduced.  相似文献   

15.
A physical model of transport in an azimuthator channel with the sheath effect resulting from the interaction between the plasma and insulation wall is established in this paper.Particle in cell simulation is carded out by the model and results show that,besides the transport due to classical and Bohm diffusions,the sheath effect can significantly influences the transport in the channel.As a result,the ion density is larger than the electron density at the exit of azimuthator,and the non-neutral plasma jet is divergent,which is unfavorable for mass separation.Then,in order to improve performance of the azimuthator,a cathode is designed to emit electrons.Experiment results have demonstrated that the auxiliary cathode can obviously compensate the space charge in the plasma.  相似文献   

16.
This paper presents plasma-induced blood coagulation and its pilot application in rat hepatectomy by using a home-made pulsed cold plasma jet. Experiments were conducted on blood coagulation in vitro, the influence of plasma on tissue in vivo, and the pilot application of rat hepatectomy. Experimental results show that the cold plasma can lead to rapid blood coagulation. Compared with the control sample, the plasma-induced agglomerated layer of blood is thicker and denser, and is mostly composed of broken platelets. When the surface of the liver was treated by plasma, the influence of the plasma can penetrate into the liver to a depth of about 500 μm. During the rat hepatectomy, cold plasma was proved to be effective for stanching bleeding on incision. No obvious bleeding was found in the abdominal cavities of all six rats 48 h after the hepatectomy. This implies that cold plasma can be an effective modality to control bleeding during surgical operation.  相似文献   

17.
In this work, the effect of a low-temperature plasma on the zeta potential of cotton fabric was studied. The silver particle absorption on cotton fabric when modified by a low-temperature plasma was also investigated. The modification consisted of plasma pre functionalization followed by a one-step wet treatment with silver nitrate solution. The process was performed in a low-temperature plasma medium, using a magnetron sputtering device. Oxygen and nitrogen were used as working gases in the system, and the results were compared. After preparing the samples, the zeta potentials of the untreated and plasma-treated cotton under a constant pH value solution were estimated and compared. Also, Fourier transform infrared spec troscopy (FTIR) was used to examine the functional groups of the corresponding samples. The amounts of silver absorption on plasma treated and untreated cotton were examined using the energy dispersive X-ray (EDX) method. The results show that the amount of zeta potential for the nitrogen plasma treated sample is less and the absorption of silver particles by cotton can be increased strongly with nitrogen plasma treatment.  相似文献   

18.
A water plasma was generated by DC arc discharge with a hafnium embedded rodtype cathode and a nozzle-type anode.The discharge characteristics were examined by changing the operation parameter of the arc current.The dynamic behavior of the arc discharge led to significant fluctuations in the arc voltage and its frequency.Analyses of the high speed image and the arc voltage waveform showed that the arc discharge was in the restrike mode and its frequency varied within several tens of kilohertz according to the operating conditions.The larger thermal plasma volume was generated by the higher flow from the forming steam with a higher restrike frequency in the higher arc current conditions.In addition,the characteristics of the water plasma jet were investigated by means of optical emission spectroscopy to identify the abundant radicals required in an efficient waste treatment process.  相似文献   

19.
This study aimed to evaluate the surface roughness and wetting properties of various dental prosthetic materials after different durations of non-thermal atmospheric plasma(NTAP)treatment.One hundred and sixty discs of titanium(Ti)(n:40),cobalt chromium(Co-Cr)(n:40),yttrium stabilized tetragonal zirconia polycrystals(Y-TZP)(n:40)and polymethylmethacrylate(PMMA)(n:40)materials were machined and smoothed with silicon carbide papers.The surface roughness was evaluated in a control group and in groups with different plasma exposure times [1-3-5 s].The average surface roughness(Ra)and contact angle(CA)measurements were recorded via an atomic force microscope(AFM)and tensiometer,respectively.Surface changes were examined with a scanning electron microscope(SEM).Data were analyzed with two-way analysis of variance(ANOVA)and the Tukey HSD test α=0.05).According to the results,the NTAP surface treatment significantly affected the roughness and wettability properties(P 0.05).SEM images reveal that more grooves were present in the NTAP groups.With an increase in the NTAP application time,an apparent increment was observed for Ra,except in the PMMA group,and a remarkable reduction in CA was observed in all groups.It is concluded that the NTAP technology could enhance the roughening and wetting performance of various dental materials.  相似文献   

20.
This review describes the application of non-thermal plasma (NTP) technology for high barrier layer fabrication in packaging area.NTP technology is considered to be the most prospective approaches for the barrier layer fabrication over the past decades due to unpollution,high speed,low-costing.The applications of NTP technology have achieved numerous exciting results in high barrier packaging area.Now it seemly demands a detailed review to summarize the past works and direct the future developments.This review focuses on the different NTP resources applied in the high barrier area,the role of plasma surface modification on packaging film surface properties,and the deposition of different barrier coatings based on NTP technology.In particular,this review emphasizes the cutting-edge technologies of NTP on interlayer deposition with organic,inorganic for multilayer barriers fabrication.The future prospects of NTP technology in high barrier film areas are also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号