首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature, using copper(I)-N,N′-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas. The influence of temperature, plasma power, mode of plasma, and pulse time, on the deposition rate of copper thin film, the purity of the film and the step coverage were studied.The feasibility of copper film deposition on the inner wall of a carbon fibre reinforced plastic waveguide with high aspect ratio was also studied. The morphology and composition of the thin film were studied by atomic force microscopy and x-ray photoelectron spectroscopy,respectively. The square resistance of the thin film was also tested by a four-probe technique. On the basis of on-line diagnosis, a growth mechanism of copper thin film was put forward, and it was considered that surface functional group played an important role in the process of nucleation and in determining the properties of thin films. A high density of plasma and high free-radical content were helpful for the deposition of copper thin films.  相似文献   

2.
Hybrid dielectric barrier discharges are investigated for plasma generated on the surface of a dielectric layer, where two conducting electrodes of high voltage and ground are formulated on the upper and bottom surfaces. Using a flexible thin polyimide-film of a thickness ranging from 25 to 125 μm, a plasma is generated with a voltage of about 1 kV and a frequency of 40 kHz.However, the surface of the dielectric layer was etched through a chemical reaction involving plasma oxygen radical species, and thus the polyimide films failed readily, resulting in dielectric breakdown within short operating time ranging from a few minutes to several tens of minutes,based on the film thicknesses of 25 μm and 125 μm, respectively. These plasma erosions were prevented by coating the polyimide surface with a 25 μm thick silicone paste. The siliconecoated film surface was then reinforced remarkably against plasma erosion as the organic polymer was vulnerable to chemical reaction of the plasma species, while the inorganic silicone exhibited a high chemical resistance against plasma erosion.  相似文献   

3.
Non-thermal plasma(NTP) technology offers wide potential use in the food technology, the same as in the unconventional agriculture. Some seeds, dry fruits, grains and their sprouts gain popularity in the culinary industry as ‘raw seeds'. This review paper draws the current research and trends in NTP pre-treatment of selected seeds/fruits that are useable as ‘raw seeds'. The main applications are connected with activation of seed germination, early growth of seedlings,microbial inactivation of seed/fruit surface, and possibility of increasing quantity of biological active compounds in sprouting seeds. The paper presents a list of plant species that are able to be used as ‘raw seed' including current information about main type of NTP treatment implemented.  相似文献   

4.
Alumina layer is a good candidate for the tritium penetration barrier that is important in the control of tritium losses due to permeation through structural materials used in high-temperature gas-cooled reactors and in fusion reactors. This paper describes the microstructure of the oxide film of the tritium penetration barrier formed on 316L stainless steel, which was prepared by a combined process, namely, aluminizing and oxidizing treatments using a double glow plasma technology. Microstructure and phase structure of the coatings investigated were examined by scanning electronic microscope (SEM), X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM), respectively. The chemical composition and the chemical states of Al, O elements in the oxidation film were identified by X-ray photoelectron spectroscopy (XPS). After aluminization, the typical microstructure of the coating mainly consisted of an outer high aluminum-containing intermetallic compound layer (Fe2Al5 and FeAl) and intermediate ferritic stainless steel (α Fe(Al))layer followed by the austenitic substrate. After the combined process, an oxide layer that consisted of Al2O3 and spinel FeAl2O4 had been successfully formed on the aluminizing coating surface, with an amorphous outmost surface and an underlying subsurface nanocrystalline structure.  相似文献   

5.
This work treats the Al2O3-ER sample surface using dielectric barrier discharge fluorination(DBD-F),DBD silicon deposition(DBD-Si),atmospheric-pressure plasma jet fluorination(APPJ-F)and APPJ silicon deposition(APPJ-Si).By comparing the surface morphology,chemical components and electrical parameters,the diverse mechanisms of different plasma modification methods used to improve flashover performance are revealed.The results show that the flashover voltage of the DBD-F samples is the largest(increased by 21.2%at most),while the APPJ-F method has the worst promotion effect.The flashover voltage of the APPJ-Si samples decreases sharply when treatment time exceeds 180 s,but the promotion effect outperforms the DBD-Si method during a short modified time.For the mechanism explanation,firstly,plasma fluorination improves the surface roughness and introduces shallow traps by etching the surface and grafting fluorine-containing groups,while plasma silicon deposition reduces the surface roughness and introduces a large number of shallow traps by coating SiOx film.Furthermore,the reaction of the DBD method is more violent,while the homogeneity of the APPJ modification is better.These characteristics influence the effects of fluorination and silicon deposition.Finally,increasing the surface roughness and introducing shallow traps accelerates surface charge dissipation and inhibits flashover,but too many shallow traps greatly increase the dissipated rate and facilitate surface flashover instead.  相似文献   

6.
N_Ox storage and reduction(NSR) technology has been regarded as one of the most promising strategies for the removal of nitric oxides(NO_x) from lean-burn engines, and the potential of the plasma catalysis method for NO_x reduction has been confirmed in the past few decades. This work reports the NSR of nitric oxide(NO) by combining non-thermal plasma(NTP) and Co/Pt/Ba/γ-Al_2O_3(Co/PBA) catalyst using methane as a reductant. The experimental results reveal that the NO_x conversion of NSR assisted by NTP is notably enhanced compared to the catalytic efficiency obtained from NSR in the range of 150 °C–350 °C, and NO_x conversion of the 8% Co/PBA catalyst reaches 96.8% at 350°C. Oxygen(O_2) has a significant effect on the removal of NO_x, and the NO_x conversion increases firstly and then decreases when the O_2 concentration ranges from 2% to 10%. Water vapor reduces the NO_x storage capacity of Co/PBA catalysts on account of the competition for adsorption sites on the surface of Co/PBA catalysts. There is a negative correlation between sulfur dioxide(SO_2) and NO_x conversion in the NTP system, and the 8% Co/PBA catalyst exhibits higher NO_x conversion compared to other catalysts, which shows that Co has a certain SO_2 resistance.  相似文献   

7.
The effects of working pressure on the component, surface morphology, surface roughness, and deposition rate of glow discharge polymer(GDP) films by a trans-2-butene/hydrogen gas mixture were investigated based on plasma characteristics diagnosis. The composition and ion energy distributions of a multi-carbon(C_4H_8/H_2) plasma mixture at different working pressures were diagnosed by an energy-resolved mass spectrometer(MS) during the GDP film deposition process. The Fourier transform infrared spectroscopy(FT–IR), field emission scanning electron microscope(SEM) and white-light interferometer(WLI) results were obtained to investigate the structure, morphology and roughness characterization of the deposited films, respectively. It was found that the degree of ionization of the C_4H_8/H_2 plasma reduces with an increase in the working pressure. At a low working pressure, the C–H fragments exhibited small-mass and high ion energy in plasma. In this case, the film had a low CH_3/CH_2 ratio, and displayed a smooth surface without any holes, cracks or asperities. While the working pressure increased to 15 Pa,the largest number of large-mass fragments led to the deposition rate reaching a maximum of 2.11 μm h~(-1), and to hole defects on the film surface. However, continuing to increase the working pressure, the film surface became smooth again, and the interface between clusters became inconspicuous without etching pits.  相似文献   

8.
Non-thermal plasma (NTP) devices produce excited and radical species that have higher energy levels than their ground state and are utilized for various applications.There are various types of NTP devices,with dielectric barrier discharge (DBD) reactors being widely used.These DBD devices vary in geometrical configuration and operating parameters,making a comparison of their performance in terms of discharge power characteristics difficult.Therefore,this study proposes a dimensionless parameter that is related to the geometrical features,and is a function of the discharge power with respect to the frequency,voltage,and capacitance of a DBD.The dimensionless parameter,in the form of a ratio of the discharge energy per cycle to the gap capacitive energy,will be useful for engineers and designers to compare the energy characteristics of devices systematically,and could also be used for scaling up DBD devices.From the results in this experiment and from the literature,different DBD devices are categorized into three separate groups according to different levels of the energy ratio.The larger DBD devices have lower energy ratios due to their lower estimated surface discharge areas and capacitive reactance.Therefore,the devices can be categorized according to the energy ratio due to the effects of the geometrical features of the DBD devices,since it affects the surface discharge area and capacitance of the DBD.The DBD devices are also categorized into three separate groups using the Kriegseis factor,but the categorization is different from that of the energy ratio.  相似文献   

9.
1. IntroductionDiamond films are expected to extend significajntlythe lifetime of cemented carbide tools for workingnonferrous materials. However, the deposition of diamond films on cemented carbides is strongly hiredered by the catalytic effect of cobalt under typicaldeposition conditions [l,2]. Decreasing Co contenton the surface of the cemented carbide is a methodoften used to eliminate the influence of Co. But theCo leaching from the WC-Co substrate usually leadsto a mechanically weak s…  相似文献   

10.
In this work, the plastic of polylatic acid(PLA) film is coated by alumina(Al_2O_3)through dielectric barrier discharge plasma assisted atomic layer deposition(DBD PA-ALD) for the proposal of the barrier property enhancement. The influence of ALD Al_2O_3 thickness on properties of barrier, mechanical, optical and degradation is investigated in detail. It is obtained that the growth rate of Al_2O_3 in DBD PA-ALD is as quick as 0.12 nm/cycle. After coated~40 nm Al_2O_3, the water vapor transmission rate of PLA is reduced by two orders of magnitude.Additionally, it is noticed that the tension strength of the coated film is improved slightly,whereas the light transmission rate is decreased with the increase of Al_2O_3 thickness. The degradation test shows that Al_2O_3 coating almost does not affect the self-degradation rate of PLA film.  相似文献   

11.
ITER test blanket modules are the most important components to validate energy production and fuel breeding for future fusion demonstration reactors. Reduced activation ferritic/martensitic steel is recognized as one of the promising structural materials for the breeding blanket systems. Beryllium is a primary candidate plasma facing materials for ITER blanket. In this work, the interfacial properties of Be/reduced activation ferritic/martensitic steel (RAF/Ms) joints were investigated for the first wall of an ITER test blanket module (TBM). The joints were produced by the solid-state hot isostatic pressing (HIP) method. Chromium (Cr) was used as a diffusion barrier with a thickness of 1 μm or 10 μm, formed by plasma vapor deposition on the Be surface. The HIPping was conducted at 1023 K and 1233 K with 160 MPa of static pressure. The temperatures are standard normalizing and tempering temperatures of F82H. EPMA showed the Cr layer effectively worked as a diffusion barrier at 1023 K. However, for the F82H/Be interface which underwent HIP at 1233 K followed by tempering a Be rich layer was formed. Bend tests revealed that a thin Cr layer and low temperature HIP is preferable. The joint with a thick Cr layer suffer from brittleness of Cr itself.  相似文献   

12.
The stress relieved tungsten samples were placed at three positions, PI (sputtering erosion dominated area), DP (deposition dominated area) and HL (Higher heat load area) during 15th plasma experiment campaign in Large Helical Device (LHD) at National Institute for Fusion Science (NIFS), Japan and were exposed to ~ 6700 shots of hydrogen plasma in a 15th long-term experiment campaign in LHD. Thereafter, the additional deuterium ion implantation to these tungsten samples was performed to evaluate the change of hydrogen isotope retention capacity in the samples by long-term plasma exposure. It was found that the carbon-dominant mixed-material layer with more than 100 nm thickness was formed on a wide area of the tungsten surface. The thicker mixed-material layer was formed on the DP sample, where the deuterium retention was about 21 times as high as that for pure W. The major desorption temperature of deuterium was shifted toward higher temperature side, which was comparable to the trapping characteristic of carbon or irradiation damages.  相似文献   

13.
通过建立三维柱腔冷冻靶计算模型,研究了外界环境辐射对间接驱动冷冻靶靶丸及燃料冰层温度场的影响。考虑柱腔内部激光入射孔(LEH)膜透光率对柱腔内靶丸和冰层温度场分布的影响,利用COMSOL软件对柱腔冷冻靶温度场进行了数值模拟计算。研究结果表明:受外界辐射影响,靶丸表面温度场呈两极热、赤道冷分布;LEH膜透光率越大,靶丸外表面温差和冰层内表面温差越大。当LEH膜透光率小于1%时,冰层内表面最大温差低于0.1 mK,可满足冰层均化和保持的要求。实验中,通过在LEH膜上镀不同厚度的铝层调控其透光率,并选择LEH膜镀铝层厚度为35 nm的冷冻靶开展了氘氘冷冻均化实验。结果表明:当LEH膜上的镀铝层厚度为35 nm时,冰层的保持能力得到大幅提升。从X射线相衬图像可知,冰层的厚度均匀性约为80.2%,粗糙度约为1.65 μm,平均厚度约为50.5 μm。  相似文献   

14.
One of the crucial steps in the second generation high temperature superconducting wire program was development of the buffer-layer architecture. The architecture designed at the Superconductivity Technology Center at Los Alamos National Laboratory consists of several oxide layers wherein each layer plays a specific role, namely: nucleation layer, diffusion barrier, biaxially textured template, and intermediate layer providing a suitable lattice match to the superconducting Y1Ba2Cu3O7 (YBCO) compound. This report demonstrates how a wide range of ion beam analysis techniques (SIMS, RBS, channeling, PIXE, PIGE, NRA and ERD) was employed for analysis of each buffer layer and the YBCO film. These results assisted in understanding of a variety of physical processes occurring during the buffer layer fabrication and helped to optimize the buffer-layer architecture as a whole.  相似文献   

15.
Electromagnetic interference(EMI) shielding composites with good flexibility and weatherability properties have attracted increased attention. In this study, we combined the surface modification method of sub-atmospheric pressure glow discharge plasma with in situ atmospheric pressure surface dielectric barrier discharge plasma(APSDBD) reduction to prepare polyethylene terephthalate supported silver(Ag/PET). Due to the prominent surface modification of PET film, mild plasma reduction, and effective control of the silver morphology by polyvinylpyrrolidone(PVP), a 3.32 μm thick silver film with ultralow sliver loading(0.022 wt%) exhibited an EMI shielding efficiency(SE) of 39.45 d B at 0.01 GHz and 31.56 d B at 1.0 GHz(30 d B in the range of 0.01–1.0 GHz). The SEM results and EMI shielding analysis indicated that the high performance originated from the synergistic effect of the formation of silver nanoparticles(Ag NPs) with preferentially oriented cell-like surface morphologies and layer-by-layer-like superimposed microstructures inside, which demonstrated strong microwave reflection properties. Fourier transform infrared spectrometer and x-ray diffractometer showed that the surface structures of the heat-sensitive substrate materials were not destroyed by plasma.Additionally, APSDBD technology for preparing Ag/PET had no special requirements on the thickness, dielectric constant, and conductivity of the substrate, which provides an effective strategy for manufacturing metal or alloy films on surfaces of heat-sensitive materials at a relatively low cost.  相似文献   

16.
介绍了厚度为350μm、有效面积为530mm~2的△E和厚度为700μm、有效面积为1380mm~2E探测器所组成的全耗尽Au-Si面垒型带电粒子望远镜的制备工艺、测试结果(Thc-c'源8.78MeV的能量分辨率△E探测器为0.8%、E探测器分辨为1.2%)和该探测器的主要用途.  相似文献   

17.
In a plasma-confinement device, material eroded from plasma facing components will be transported and re-deposited at other locations inside the reaction chamber. Since beryllium from the first wall of the ITER fusion reactor will be eroded, ionized in the scrape-off layer plasma and finally re-deposited on divertor surfaces flowing along the magnetic field, it is important to study the properties of divertor armour materials (C, W) coated with beryllium.By applying different bias voltages (−200 V to +700 V) to the substrates during deposition, the morphology of the obtained films was modified. The films’ morphology was characterized by means of AFM and SEM, and it was found that the coatings prepared using negative bias voltage at the substrate during deposition are more compact and have a smoother surface compared to the samples prepared with positive bias voltage. The thickness and composition of each film were measured using Rutherford backscattering spectrometry (RBS). A study of deuterium implantation and retention into the prepared films was performed at IPP Garching in the high current ion source.  相似文献   

18.
In this paper,A12O3 thin films are deposited on a hydrogen-terminated Si substrate by using two home-built electron cyclotron resonance (ECR) and magnetic field enhanced radio frequency plasma-assisted atomic layer deposition (PA-ALD) devices with Al(CH3)3 (trimethylaluminum,TMA) and oxygen plasma used as precursor and oxidant,respectively.The thickness,chemical composition,surface morphology and group reactions are characterized by in situ spectroscopic ellipsometer,x-ray photoelectric spectroscopy,atomic force microscopy,scanning electron microscopy,a high-resolution transmission electron microscope and in situ mass spectrometry (MS),respectively.We obtain that both ECR PA-ALD and the magnetic field enhanced PA-ALD can deposit thin films with high density,high purity,and uniformity at a high deposition rate.MS analysis reveals that the A12O3 deposition reactions are not simple reactions between TMA and oxygen plasma to produce alumina,water and carbon dioxide.In fact,acetylene,carbon monoxide and some other by-products also appear in the exhaustion gas.In addition,the presence of bias voltage has a certain effect on the deposition rate and surface morphology of films,which may be attributed to the presence of bias voltage controlling the plasma energy and density.We conclude that both plasma sources have a different deposition mechanism,which is much more complicated than expected.  相似文献   

19.
采用超高真空脉冲激光沉积(PLD)方法,在单晶Si基底表面制备了单层Au、单层U薄膜和Au/U/Au复合薄膜,应用SEM、白光干涉轮廓分析和AES分析,研究了靶基距、基片温度和激光能量对薄膜形貌、成分的影响。目前的实验结果显示,PLD所制备的Au、U薄膜表面有μm级以下粒径的液滴产生,在液滴较少位置,薄膜表面粗糙度Ra小于1 nm,在包含大液滴位置,Ra不超过15 nm。在相同沉积条件下,U薄膜表面液滴数量大于Au薄膜。优化单层薄膜沉积工艺后制备的Au/U/Au复合膜厚度约为195 nm,均方根粗糙度Rq在0.3~1.5 nm之间。AES分析显示,Au/U/Au复合膜中强化学活性的铀呈金属状态,复合膜中的氧含量低于5%(原子百分数),表层Au薄膜对U薄膜起到了良好的防氧化作用。在沉积工艺中,通过减小激光功率、增大靶基距并适当升高基片温度,可减少液滴的数量及粒径。  相似文献   

20.
Atmospheric pressure cold plasma, with advantages such as high particle activity, no thermal damage, high efficiency and direct and friendly contact with human tissues, is considered to have great potential in biomedical applications. Therefore, ‘plasma medicine’ as a new interdiscipline has been developed in the past two decades. This review first briefly describes the development of typical plasma sources suitable for biomedical applications, and those with different discharge forms are simply compared, evaluated and summarized. Subsequently, measurement of the crucial gaseous reactive particles (e.g. OH and O) and their spatio-temporal distributions are introduced. Meanwhile, the generation and variation rules and the related critical macroscopic parameters of the plasma-induced aqueous reactive species are summarized. Finally, related studies in the last ten years on the mechanisms of the plasma-driven microbial inactivation and plasma-induced apoptosis of cancer cells are introduced. Moreover, some scientific problems that need to be urgently solved in the field of plasma medicine are also discussed. This review will provide useful guidance for future related research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号