首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
基于主动Lamb波的结构健康监测是目前复合材料结构损伤监测技术研究的热点之一,了解Lamb波的传播特性对进行可靠的损伤监测非常重要.本文结合经典三维弹性理论与Lamb波的运动位移方程,对碳纤维复合材料板中传播的Lamb波传播特性进行了建模研究,在此基础上推导了碳纤维板的相速度频散曲线,并讨论了Lamb波传播方向与坐标轴之间的夹角及碳纤维铺层方向对频散曲线的影响,建模结果证明了这种建模方法的正确性.  相似文献   

2.
超声Lamb波是检测板状结构损伤的常用方法,然而碳纤维增强聚合物基复合材料(Carbon Fiber ReinforcedPlastics,CFRP)本身的各向异性会对Lamb波的损伤成像和定位造成很大的影响。且大多数检测方法均采用健康结构的检测信号作为参考信号,用差信号的方法来实现损伤成像,该过程容易受到待测结构和实验环境变化等外界因素的影响。针对该问题,采用时间反转和加权分布成像相结合的方法,将其应用在复合材料板状结构的Lamb波损伤检测和成像中。仿真结果表明,该方法能够有效地实现板中单源脱层损伤和多源脱层损伤的二维成像与定位,且具有较高的精度和准确性。  相似文献   

3.
Selective modes of guided Lamb waves are generated in a laminated aluminum plate for damage detection using a broadband piezoelectric transducer structured with a rigid electrode. Appropriate excitation frequencies and modes for inspection are selected from theoretical and experimental dispersion curves. Dispersion curves are obtained experimentally by short time Fourier transform of the transient signals. Sensitivity of antisymmetric and symmetric modes for delamination detection are investigated. The antisymmetric mode is found to be more reliable for delamination detection. Unlike other studies, in which the attenuation of the propagating waves is related to the extent of the internal damage, in this investigation, the changes in the time-of-flight (TOF) of guided Lamb waves are related to the damage progression. The mode conversion phenomenon of Lamb waves during progressive delamination is investigated. Close matching between the theoretical and experimentally derived dispersion curves and TOF assures the reliability of the results presented here.  相似文献   

4.
This paper proposes a novel experimental method for measuring the propagating characteristics of leaky Lamb waves in a piezoelectric plate surrounded by a fluid. It is a differential type of measurement and is very sensitive to the velocity change and wave attenuation of leaky Lamb waves induced by fluid-loading effects. Experimental measurements on an X-cut LiNbO3 plate immersed in a dielectric and conductive fluid have been carried out. The velocity change and wave attenuation of the leaky Lamb waves caused by dielectric and conductive loadings of the fluid have been experimentally determined. The measured data have been compared with the theoretical ones that are calculated from a partial wave analysis. For the wave velocity, very good agreements between the experimental and theoretical results are observed. For the wave attenuation, there are some discrepancies, but an important characteristic in the relationship between wave attenuation and fluid conductivity as predicted by the theory have been verified experimentally.  相似文献   

5.
In this paper, a very promising procedure is proposed to evaluate delamination using Acoustic Emission (AE) technique in composite laminates. First, a new procedure was developed to decompose the fundamental Lamb wave modes in small size specimens. The damage mechanisms in End Notched Flexure (ENF) in woven and unidirectional specimens were then discriminated using Fuzzy Clustering Method (FCM). Afterwards, the crack-arrest phenomenon was examined in each specimen. After that, experimental and Cohesive Zone Modeling (CZM) techniques were conducted to characterize the delamination using ENF specimens. The results showed how, it is possible to successfully decrease the effect of propagating media such as attenuation of AE signals using the new proposed methodology. As a final point, the results of this study could lead to efficiently distinguishing different damages in laminated composite using AE Lamb-based technique.  相似文献   

6.
The understanding of the impact of environmental influence factors on propagation and damping of Lamb waves in composite materials is a topic of great interest for both design and utilization of structural health monitoring (SHM) systems. In this work, the influence of humidity absorption on the dispersive behavior of Lamb waves propagating in viscoelastic composite materials is investigated. Using a transversely isotropic material model and DMA measurements, the changes in the viscoelastic material properties due to water absorption are characterized. By means of a higher order plate theory and those mechanical properties, the dispersion curves for unconditioned and hot/wet-conditioned UD reinforced CFRP plates are then predicted. Both the changes in Lamb wave velocity and Lamb wave damping are investigated and compared with experimental values. Additionally, the changes of the sensor response, which are related to both the changes of the material properties and that of the adhesive layer, are investigated. The large impact of moisture absorption on Lamb wave excitation and propagation and its relevance for structural health monitoring (SHM) applications is shown and discussed.  相似文献   

7.
复合材料板脱层损伤的时间反转成像监测   总被引:7,自引:4,他引:3  
基于时间反转理论,对主动Lamb波复合材料结构脱层损伤成像监测技术进行了研究。分析了时间反转方法的理论基础以及对波源的信号聚焦过程。根据信号传播自身的特性,研究采用时间反转聚焦方法使损伤散射信号能量叠加放大,从而提高信号的信噪比,分析给出了具体的损伤信号时间反转聚焦增强过程;利用时间反转法对波源的自适应聚焦能力,重建信号传播波动图,通过信号聚焦显示损伤位置和区域。在玻璃纤维复合材料板上的真实损伤实验结果表明,该方法能有效提高损伤散射信号的能量,较为准确地监测出损伤的位置、大致范围等特征。  相似文献   

8.
In this study, a damage identification approach was developed for carbon fibre/epoxy composite laminates with localized internal delamination. Propagation of the Lamb wave in laminates and its interaction with the delamination were examined. The fundamental symmetric Lamb wave mode, S0, and the lowest order shear wave mode, S0, were chosen to predict damage location. A real-time active diagnosis system was therefore established. This technique uses distributed piezoelectric transducers to generate and monitor the ultrasonic Lamb wave with narrowband frequency. The two-way switches were employed to minimize the number of transducers. A signal-processing scheme based on the time–frequency spectrographic analysis was utilised to extract useful diagnostic information. Also, an optimal identification method was applied on damage searching procedure to reduce errors and obtain the diagnostic results promptly. Experiments were conducted on [0/−45/45/90]s CF/EP laminates to verify this diagnosis system. The results obtained show that satisfactory detection accuracy could be achieved.  相似文献   

9.
The authors and Hitachi Cable, Ltd. have recently developed small-diameter optical fiber and its fiber Bragg grating (FBG) sensor for embedment inside a lamina of composite laminates without strength reduction. The outside diameters of the cladding and polyimide coating are 40 and 52 μm, respectively. First, a brief summary is presented for applications of small-diameter FBG sensors to damage monitoring in composite structures. Then, we propose a new damage detection system for quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing. In this system, a piezo-ceramic actuator generates Lamb waves in a CFRP laminate. After the waves propagate in the laminate, transmitted waves are received by an FBG sensor attached on or embedded in the laminate using a newly developed high-speed optical wavelength interrogation system. This system was applied to detect interlaminar delamination in CFRP cross-ply laminates. When the Lamb waves passed through the delamination, the amplitude decreased and a new wave mode appeared. These phenomena could be well simulated using a finite element analysis. From the changes in the amplitude ratio and the arrival time of the new mode depending on the delamination length, it was found that this system could evaluate the delamination length quantitatively. Furthermore, small-diameter FBG sensors were embedded in a double-lap type coupon specimen, and the debonding progress could be evaluated using the wavelet transform.  相似文献   

10.
Digital damage fingerprints (DDFs) are a set of optimised and digitised characteristics of structural signatures, which are able to exactly and uniquely define a certain kind of structural healthy status. The DDF-based damage recognition technique includes the extraction of DDFs, assembly of damage parameters database (DPD) and subsequently inverse recognition in virtue of artificial intelligence. In this study, DDFs extracted from Lamb wave signals were employed to quantitatively assess delamination in carbon fibre-reinforced laminated beams. Characteristics of Lamb wave signals in the laminated beams were first evaluated, and DPD hosting DDFs for selected damage scenarios was constructed through numerical simulations, which was used to predict delamination in the composite beams with the aid of an artificial neural algorithm. The diagnostic results have demonstrated the excellent performance of DDF technique for quantitative damage identification.  相似文献   

11.
Piezo-ceramic transducers of the surface mounted type are commonly used for structural health monitoring (SHM) techniques. But, there is a disadvantage to use piezo-ceramic transducers of the surface mounted type in Lamb wave application. Due to the symmetric and antisymmetric Lamb wave modes generated by the surface mounted piezo-ceramic transducers simultaneously, the received signals are very complex and it is difficult to extract damage information from the signals.

In this paper, the practical method for SHM was proposed using piezo-ceramic transducers of the surface mounted type and Lamb wave. In order to overcome the difficulties in the signal processing of the simultaneous modes, the symmetric and antisymmetric modes were separated by using the two sensors bonded on the opposite surfaces at the same point. Also, spectral analyses of the separated symmetric and antisymmetric Lamb waves showed that each mode propagated with different frequency characteristics in the exciting frequency range.

By making use of these findings, the changes of power spectrum density in characteristic frequency band of symmetric and antisymmetric modes are proportional to the delamination size in quasi-isotropic Gr/Ep laminates. Therefore, this paper presents the damage assessment technique to extract damage information from the complicated PZT signals that could not be interpreted in time domain.  相似文献   


12.
Abstract: Both theoretical investigations and successful experimental research were performed recently, confirming the existence and demonstrating the main properties of bulk strain solitary waves in nonlinearly elastic solid wave guides. Our current research is devoted to nonlinear wave processes in layered elastic wave guides with inhomogeneities modelling damage/delamination. Here, we present first experimental and theoretical results, demonstrating the change in the amplitude and width of a strain solitary wave propagating in an inhomogeneous two‐layered wave guide made of Polymethyl Methacrylate (PMMA). Parameters of such waves in layered structures may be useful for the assessment of their operational integrity and robustness.  相似文献   

13.
采用非接触空耦传感器在准各向同性复合材料板中激励出单一的Lamb波模态,用于分层缺陷的扫描检测。扫描时,激励和接收传感器置于复合材料板同侧并相对倾斜布置,传感器沿2个正交方向同步线性扫描,得到不同位置的检测信号。对不同扫描路径下的检测信号进行连续小波变换,提取激励频率下的小波系数包络信号,对分层缺陷进行成像。在此基础上,利用概率损伤算法定义损伤指数,结合不同方向的损伤指数实现分层缺陷成像。采用全加法和全乘法对2个正交扫描方向得到的成像结果进行数据融合,实现了分层缺陷的定位和重构。并在成像算法中引入阈值,进一步提高了分层缺陷的定位精度以及重构质量。  相似文献   

14.
This work assesses the suitability of the two zero-order Lamb wave modes to detect multiple barely-visible impact damage in composite material. Three specimens were subjected to damage at three different low-energy levels and one was left as an undamaged reference sample. Ultrasonic Lamb wave modes were selectively generated by surface-bonded piezoceramic wafer transducers in two tuned configurations. By using an algorithm based on the Akaike Information Criterion the time-of-flight of the Lamb modes was determined, allowing their threshold detection capabilities for the studied application to be successfully benchmarked. The results were consistently validated by digital shearography, ultrasonic C-scan and optical microscopy. A study of the effects on structural integrity was completed with an assessment of the damping ratio and residual bending strength proving to be sensitive parameters to the induced damage.  相似文献   

15.
陆希  孟光  李富才 《振动与冲击》2012,31(12):63-67
研究复杂工程结构的结构健康监测技术具有现实意义。使用基于Lamb波的仿真和实验方法,对“U”形截面的铝合金构件中的损伤检测问题进行了研究。建立了构件的三维有限元模型并实现了Lamb波传播过程的动态仿真;实验中使用锆钛酸铅压电晶片(PZT wafer)来激发和接收在构件中传播的Lamb波。借助于连续小波变换(CWT)和希尔伯特变换(HT)等方法对仿真和实验中采集到的Lamb波信号进行处理,从中提取了与损伤有关的时域特征,建立了损伤位置和损伤反射波包飞行时间(ToF)之间的定量关系。  相似文献   

16.
Impact damage is one of the major concerns in maintenance of aircraft structures built from composite materials. Damage detection in composite materials can be divided into active and passive approaches. The active approach is usually based on various non-destructive techniques utilizing actuators and/or receivers. In contrast passive approaches do not involve any actuators; receivers are used to “sense and/or hear” any perturbations caused by possible hidden damage. Often strain data are used to localize impacts and estimate their energy. The assumption is that damage occurs above well-defined energy of impacts. The paper illustrates one active and one passive method recently developed for impact damage detection. The first method, based on guided ultrasonic waves, utilises 3-D laser vibrometry and does not require any signal processing. Simple laser scans, revealing the change in Lamb wave response amplitudes, have been used to locate delamination and estimate its severity in a composite plate. In contrast, the second method does not require any sophisticated instrumentation but relies on advanced signal processing. An array of piezoceramic sensors has been to detect strain waves transmitted from an impact applied to the composite aircraft structure. The modified multilateration procedure with Genetic Algorithms has been used to locate impact position.  相似文献   

17.
Lamb wave tomography (LWT) is a potential and efficient technique for non-destructive tomographic reconstruction of damage images in structural components or materials. A new two-stage inverse algorithm with a small amount of scanning data for quickly reconstructing damage images in aluminum and CFRP laminated plates was proposed in this paper. Due to its high sensitivity to damages, the amplitude decrease of transmitted Lamb waves after travelling through the inspected region was employed as a key signal parameter related to the attenuation of Lamb waves in propagation routes. A through-thickness circular hole and a through-thickness elliptical hole in two aluminum plates, and an impact-induced invisible internal delamination in a CFRP laminated plate were used to validate the effectiveness and reliability of the proposed method. It was concluded that the present new algorithm was capable of reconstructing the images of the above mentioned various damages successfully with much less experimental data compared with those needed by some traditional techniques.  相似文献   

18.
Lamb wave time reversal method is a new and tempting baseline-free damage detection technique for structural health monitoring. With this method, certain types of damage can be detected without baseline data. However, the application of this method using piezoelectric wafer active sensors (PWAS) is complicated by the existence of at least two Lamb wave modes at any given frequency, and by the dispersion nature of the Lamb wave modes existing in thin-wall structures. The theory of PWAS-related Lamb wave time reversal has not yet been fully studied. This paper addresses this problem by developing a theoretical model for the analysis of PWAS-related Lamb wave time reversal based on the exact solutions of the Rayleigh-Lamb wave equation. The theoretical model is first used to predict the existence of single-mode Lamb waves. Then the time reversal behavior of single-mode and two-mode Lamb waves is studied numerically. The advantages of single-mode tuning in the application of time reversal damage detection are highlighted. The validity of the proposed theoretical model is verified through experimental studies. In addition, a similarity metric for judging time invariance of Lamb wave time reversal is presented. It is shown that, under certain condition, the use of PWAS-tuned single-mode Lamb waves can greatly improve the effectiveness of the time-reversal damage detection procedure.  相似文献   

19.
In this paper, we investigate Lamb wave interaction with delamination in an infinite carbon fiber reinforced plastics (CFRP) laminate by a hybrid method. The infinite CFRP laminate is divided into an exterior zone and an interior zone. In the exterior zone, the wave fields are expressed by wave mode expansion. In the interior zone, the wave fields are modeled by the finite element method (FEM). Considering the continuity condition at the boundary between the exterior and interior zones, the global wave fields can be calculated. Lastly, numerical examples show how a delamination in the laminate influences the mode conversion of different incident wave modes.  相似文献   

20.
为了准确评估定子绝缘结构健康状况,基于导波理论进行定子绝缘结构损伤成像检测研究。首先根据定子绝缘材料特性参数,建立定子线棒结构有限元模型。对定子绝缘损伤检测中导波的激励、传播和接收进行数值模拟,并建立横向裂纹、纵向裂纹、气隙和分层四种典型定子绝缘损伤模型。利用希尔伯特变换提取损伤散射信号到达时间作为损伤特征,采用概率成像方法对定子绝缘中的损伤状况进行成像检测。数值仿真结果表明:损伤散射导波飞行时间是表征损伤位置的有效特征,A0模态损伤散射波对定子绝缘损伤更敏感,概率成像能够直观地检测出定子绝缘中的损伤并能进行准确定位,为进一步应用导波进行大电机定子绝缘状态评估提供有效的参考信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号