首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
This paper studies generation of robust periodic solutions in a class of nonlinear discrete-time system. The sustained oscillations, with the desired frequency and amplitude, are achieved through the creation of the appropriate elliptic limit cycle in the phase plane of the uncertain closed-loop discrete-time system. In the first step, the nominal control law is designed to enforce the trajectories of the nominal closed-loop system to converge to the desired limit cycle. Next, considering uncertain terms, an additional robustifying term is designed. This term is added to the nominal controller to sustain the desirable stable oscillations in the presence of uncertain terms. The resulted robust controller brings the trajectories of the uncertain closed-loop discrete-time system to a boundary layer (with adjustable width) around the desired limit cycle. Moreover, the domain of attraction of the limit cycle and also the ultimate boundary layer around it are calculated via the Lyapunov analysis. Additionally, in order to verify the applicability of the proposed method, it is implemented on the discretised model of a spring–damper system. Computer simulations confirm the theoretical results in generating robust stable oscillations.  相似文献   

8.
9.
10.
In this paper, a controller order reduction method for linear parameter-varying systems is presented. The proposed method is based on the frequency-weighted balanced truncation technique, which has the advantage to reduce the order in a specific frequency range. The approach is discussed and is proved to preserve the closed-loop stability with a guaranteed upper error bound. Effectiveness and performance of the obtained reduced-order controller are investigated by applying it to an automotive semi-active suspension control. The obtained simulation results show that objectives such as the road handling and the passenger comfort realised with the reduced-order controller are kept in the same performance level as with the full-order controller. Moreover, a comparison with an other-order reduction method is shown and confirms the advantage of the developed method.  相似文献   

11.
In this paper, the control problem for a class of linear parameter varying (LPV) plant subject to actuator saturation is investigated. For the saturated LPV plant depending on the scheduling parameters in linear fractional transformation (LFT) fashion, a gain-scheduled output feedback controller in the LFT form is designed to guarantee the stability of the closed-loop LPV system and provide optimised disturbance/error attenuation performance. By using the congruent transformation, the synthesis condition is formulated as a convex optimisation problem in terms of a finite number of LMIs for which efficient optimisation techniques are available. The nonlinear inverted pendulum problem is employed to demonstrate the effectiveness of the proposed approach. Moreover, the comparison between our LPV saturated approach with an existing linear saturated method reveals the advantage of the LPV controller when handling nonlinear plants.  相似文献   

12.
13.
This paper is concerned with neutral stochastic delay differential equations with Markovian switching (NSDDEs-MS). A kind of ψ ??function is introduced and some criteria on the attractor for the product of the ψ ??function are obtained. By the new criteria, the almost sure stability with the general decay rate of NSDDEs-MS could be examined, including the exponential stability and the polynomial stability. Finally, an example is provided to illustrate the applications of our results clearly.  相似文献   

14.
15.
This paper studies the control synthesis for uncertain semi-Markov jump systems in a discrete-time domain subjected to external disturbance. The switching between modes is determined by a function of the transition probability and the sojourn-time distribution between two neighbouring modes. Based on the σ-error mean square stability criterion, time-varying controllers are designed to stabilise the system. By constructing a holding time dependent Lyapunov function, time-varying state-feedback controllers are obtained that meet a set of sufficient conditions in the form of linear matrix inequalities. Two examples, including a DC motor system, are presented to show the validity of the proposed control scheme.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号