首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article is concerned with the problem of H predictive control of networked control system with random network delay. A new control scheme termed networked predictive control is proposed. This scheme mainly consists of the control prediction generator and network delay compensator. While designing the predictor, the control input to the actuator may be different due to networked induced time-delay and data dropout, and two cases are considered depending on the way that the observer obtains the plant control input u t . The necessary and sufficient conditions are given for the closed-loop networked predictive control system to be stochastically stable for different u t and random network delays in controller to actuator channel (CAC) and sensor to controller channel (SCC). A simulation study shows the effectiveness of the proposed scheme.  相似文献   

2.
朱芳来  蔡明  郭胜辉 《自动化学报》2017,43(12):2091-2099
对具有未知输入的离散切换系统讨论了未知输入观测器(Unknown input observer,UIO)设计方法.首先,对一般离散系统的未知输入观测器匹配条件的Lyapunov-type表示,进行了等价性论证;然后,基于不具有未知输入的离散切换系统的稳定性理论,对具有未知输入的离散切换系统提出了一种切换降维观测器设计方法.通过矩阵分块确定出的观测器增益矩阵,使得降维观测器能直接消去未知输入的影响;然后,在此基础上提出了一种未知输入代数重构方法;最后,通过仿真验证了方法的有效性和正确性.  相似文献   

3.
Unknown input observers (UIOs) are observers that have stable error dynamics that are independent of unknown inputs. This paper studies such observers for non-linear systems, and shows that the error dynamics for a non-linear UIO has the same structure as the error dynamics of a non-linear observer without unknown inputs. This result is first used to provide synthesis inequalities for UIOs for a class of non-linear systems, and secondly, to inspire the design of an observer for estimation of vehicle lateral velocity on banked roads.  相似文献   

4.
In this paper, a novel approach is proposed to design a robust fault detection observer for uncertain linear time delay systems. The system is composed of both norm‐bounded uncertainties and exogenous signals (noise, disturbance, and fault) which are considered to be unknown. The main contribution of this paper is to present unknown input observer (UIO)‐based fault detection system which shows the maximum sensitivity to fault signals and the minimum sensitivity to other signals. Since the system contains uncertainty terms, an H model‐matching approach is used in design procedure. The reference residual signal generator system is designed so that the fault signal has maximum sensitivity while the exogenous signals have minimum sensitivity on the residual signal. Then, the fault detection system is designed by minimizing the estimation error between the reference residual signal and the UIO residual signal in the sense of H norm. A sufficient condition for the existence of such a filter is exploited in terms of certain linear matrix inequalities (LMIs). Application of the proposed method in a numerical example and an engineering process are simulated to demonstrate the effectiveness of the proposed algorithm. Simulation results show the validity of the proposed approach to detect the occurrence of faults in the presence of modeling errors, disturbances, and noise.  相似文献   

5.
Algebraic unknown input observers (UIOs) that have been previously reported in the literature can be constructed under the assumption that linear systems with unknown inputs satisfy the so-called observer matching condition. This condition restricts practical applications of UIOs for fault detection and isolation (FDI). We present an algebraic design for fault detection observers (FDOs) for the case in which the observer matching condition is not satisfied. To loosen the restriction imposed by the observer matching condition, the UIO design method combined with the unknown input modeling technique is proposed to design an FDO that decouples the effect of mismatched unknown inputs. To do this, first, unknown inputs that denote the faults of no interest and process disturbances are decomposed into algebraically rejectable unknown inputs and modeled unknown inputs such that the observer matching condition is satisfied. Under the assumption that mismatched unknown inputs are deterministic and can be expressed as the responses of fictitious autonomous dynamical systems, an augmented system is obtained by combining the original system model with the unknown input model. Finally, through the design technique of a UIO for the augmented system, a reduced-order FDO is constructed to estimate an augmented state vector that consists of both the original state variables and the augmentative state variables. The estimated state is then used to generate the residual, which should be designed to be insensitive to unknown inputs while being sensitive to the faults of interest. Two numerical examples are provided to show the usefulness and the feasibility of the presented approach.  相似文献   

6.
7.
A new design approach to unknown input observers   总被引:1,自引:0,他引:1  
This paper proposes a fundamentally new unknown input observer (UIO) which has, uniquely, r decoupled modes, provides r linearly independent combinations of plant system states, and has zero gain to all p, unknown inputs. The parameter r is adjustable. If the plant system satisfies the conditions of the existing UIO, then r=n=plant system order, and there is no difference between our UIO and the existing regular UIO. However, if the plant system satisfies either of the following two significantly more general conditions: m>p (m is the number of plant output measurements) and at least one stable transmission zero, then 1相似文献   

8.
This paper proposes to design an unknown input observer (UIO) for the linear‐parameter‐varying (LPV) system on the basis of the set theory, which is named as the set‐theoretic UIO (SUIO). The advantage of the SUIO consists in that it combines active and passive approaches to obtain robustness in state estimation (SE) and fault detection (FD). The active approach is based on the use of UIO to decouple unknown inputs, while the passive approach is based on the set theory to bound uncertain factors that cannot be actively decoupled. As a result, the effect of both unknown inputs (process disturbances, modeling errors, etc.) and measurement noises can be appropriately handled in the residual signals compared with the standard UIO‐based SE and FD approaches. The design of SUIO can overcome the limitations of the traditional UIO design conditions, which can significantly broaden the application of the UIO‐based SE and FD theory. Moreover, this paper proposes a generalized framework that can provide more flexibility in the design of SUIO guaranteeing their stability by means of a group of matrix inequalities. Because the LPV system uses a collection of online obtainable scheduling variables to embed nonlinearities, the design of SUIO for the LPV system can be used to address the SE and FD problems of nonlinear systems. At the end of this paper, two case studies are used to illustrate the effectiveness of the proposed approach. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, the unknown input observer (UIO) design for singular delayed linear parameter varying (LPV) systems is considered regarding its application to actuator fault detection and isolation. The design procedure assumes that the LPV system is represented in the polytopic framework. Existence and convergence conditions for the UIO are established. The design procedure is formulated by means of linear matrix inequalities (LMIs). Actuator fault detection and isolation is based on using the UIO approach for designing a residual generator that is completely decoupled from unknown inputs and exclusively sensitive to faults. Fault isolation is addressed considering two different strategies: dedicated and generalised bank of observers’ schemes. The applicability of these two schemes for the fault isolation is discussed. An open flow canal system is considered as a case study to illustrate the performance and usefulness of the proposed fault detection and isolation method in different fault scenarios.  相似文献   

10.
The design of a functional observer and reduced-order observer with internal delay for linear singular timedelay systems with unknown inputs is discussed. The sufficient conditions of the existence of observers, which are normal linear time-delay systems, and the corresponding design steps are presented via linear matrix inequality(LMI). Moreover, the observer-based feedback stabilizing controller is obtained. Three examples are given to show the effectiveness of the proposed methods.  相似文献   

11.
This paper presents a finite-time observer for linear time-delay systems with commensurate delay. Unlike the existing observers in the literature which converge asymptotically, the proposed observer provides a finite-time estimation. This is realised by using the well-known homogeneous technique, and the results are also extended to investigate the estimation problem for linear time-delay systems with unknown inputs. Simulation results are presented in order to illustrate the feasibility of the proposed method.  相似文献   

12.
The design of a functional observer and reduced-order observer with internal delay for linear singular timedelay systems with unknown inputs is discussed. The sufficient conditions of the existence of observers, which are normal linear time-delay systems, and the corresponding design steps are presented via linear matrix inequality(LMI). Moreover, the observer-based feedback stabilizing controller is obtained. Three examples are given to show the effectiveness of the proposed methods.  相似文献   

13.
This paper presents a concise and straightforward formulation of the unknown input observer (UIO) problem based on the general structured observer. By employing the simplest generalized inverse of matrices, the {1}-inverse, we develop constructive design procedures for the UIO design that provide necessary and sufficient conditions for both full-order and reduced-order general structured UIOs. Moreover, corresponding configurations for continuous-time systems are also derived, and consequently this paper renders the complete solutions for general structured UIO design. Furthermore, we show that the general structured UIO is structurally and numerically equivalent to the UIO in the configuration of Luenberger observer. Examples are included to illustrate the validity of the proposed methodology.  相似文献   

14.
潘腾  姜顺  潘丰 《信息与控制》2023,52(1):104-114
针对一类存在执行器故障和部分解耦扰动的离散时间网络化控制系统,研究测量数据随机丢失情况下的主动容错控制问题。首先,通过模型转换将原系统化为一个与之等价的状态增广系统;然后在考虑测量数据发生随机丢失情况下,构造未知输入观测器(unknown input observer, UIO)实现对系统状态与故障的联合估计,再基于状态和故障的在线估计值,设计基于信号补偿的容错控制律实现对原系统的主动容错控制。在该容错控制算法中,观测器与控制器增益的存在性条件均可利用李雅普诺夫稳定性理论对误差系统进行随机分析得到,相应的估计器和控制器参数可通过在线求解具有凸约束的矩阵不等式获得。最后,通过一个喷气式发动机模型的仿真算例验证所提出的故障估计与主动容错控制方法的有效性。  相似文献   

15.
This paper considers the design of low-order unknown input functional observers for robust fault detection and isolation of a class of nonlinear Lipschitz systems subject to unknown inputs. The proposed functional observers can be used to generate residual signals to detect and isolate actuator faults. By using the generalized inverse approach, the effect of the unknown inputs can be decoupled completely from the residual signals. Conditions for the existence and stability of reduced-order unknown input functional observer are derived. A design procedure for the generation of residual signals to detect and isolate actuator faults is presented using the proposed unknown-input observer-based approach. A numerical example is given to illustrate the proposed fault diagnosis scheme in nonlinear systems subject to unknown inputs.  相似文献   

16.
一种基于最优未知输入观测器的故障诊断方法   总被引:1,自引:0,他引:1  
胡志坤  孙岩  姜斌  何静  张昌凡 《自动化学报》2013,39(8):1225-1230
针对含有未知输入干扰和噪音的不确定动态系统,使用全阶未知输入观测器(Unknown input observer, UIO)来消除干扰项,实现状态估计, 结合Kalman滤波器算法来求解状态反馈矩阵,以使得输出残差信号的协方差最小,从而增强系统对噪声的鲁棒性,实现了 一种基于最优未知输入观测器的残差产生器.采用极大似然比(Generalized likelihood ratio, GLR)的方法对残差信号进行评估,通过设定的阈值来提高诊断率. 最后以风力发电机组传动系统出现加性传感器故障和乘性传感器故障为例, 进行了残差信号的仿真,仿真结果说明了该方法的有效性.  相似文献   

17.
研究了具有输出传输长时延的网络控制系统基于观测器的故障检测,在总结其设计方法的基础上利用预测状态作为控制器的输入,设计了具有延迟补偿功能的状态观测器,通过求取观测器增益矩阵来使得状态重构能跟上实际状态的响应性能。产生的残差信号对干扰信号和不确定项具有较强的鲁棒性,同时对故障信号具有较高的灵敏度。最后给出了网络控制系统基于观测器的故障检测的设计步骤。  相似文献   

18.
International Journal of Control, Automation and Systems - This paper presents a novel unknown input observer (UIO) design for discrete-time linear parameter-varying (LPV) systems. One feature of...  相似文献   

19.
具有输出延迟的网络化控制系统稳定性分析   总被引:2,自引:2,他引:0  
于水情  李俊民 《控制工程》2004,11(6):536-539
将网络化控制系统看成一个具有输出时延的采样控制系统,运用具有时延的输出信号设计了一种新的观测器和相应的控制器,从而得到含有时滞的闭环网络化控制系统和使该闭环系统稳定的充分条件。最后给出了求解观测器增益和控制器增益的锥补线性化方法,仿真实例说明了所提方法的有效性。  相似文献   

20.
The problem of event-triggered H filtering for networked Markovian jump system is studied in this paper. A dynamic discrete event-triggered scheme is designed to choose the transmitted data for different Markovian jumping modes. The time-delay modelling method is employed to describe the event-triggered scheme and the network-related behaviour, such as transmission delay, data package dropout and disorder, into a networked Markovian time-delay jump system. Furthermore, a sufficient condition is derived to guarantee that the resulting filtering error system is stochastically stable with a prescribed performance index. A co-design method for the H filter and the event-triggered scheme is then proposed. The effectiveness and potential of the theoretic results obtained are illustrated by a simulation example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号