首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
在热模拟试验机上对Q690D高强度钢进行不同冷却速率的热模拟试验,绘制动态连续冷却转变曲线,用光学显微镜观察该钢的显微组织,用维氏硬度计测试其维氏硬度。结果表明:当冷却速率小于0.1℃/s时,Q690D高强度钢的组织基本为珠光体、铁素体和少量贝氏体;当冷却速率为0.5℃/s时,珠光体消失,组织全部为贝氏体;当冷却速率为3℃/s时,组织中出现马氏体;当冷却速率增大至8℃/s时,贝氏体几乎全部消失,基体组织基本为马氏体;当冷却速率大于10℃/s时,组织全部为马氏体,得到马氏体临界转变冷却速率为10℃/s。  相似文献   

2.
测定了一种汽车用微合金非调质钢的过冷奥氏体连续冷却转变曲线,研究了冷却速率对相变组织及显微硬度的影响。结果表明:试验钢的临界点Ac3为838℃,Ac1为732℃;当冷却速率小于0.2℃/s时,试验钢的连续冷却转变产物为铁素体、珠光体和贝氏体;当冷却速率为0.2℃/s时,转变产物中出现马氏体;当冷却速率为5℃/s时,铁素体、珠光体消失,转变产物为贝氏体和马氏体;随着冷却速率的增大,马氏体含量逐渐增多,贝氏体含量逐渐减少,甚至完全消失;当冷却速率增大至20℃/s时,转变产物均为马氏体;随着冷却速率的增大,试验钢的显微硬度呈先快速增长,后增长速率变缓的趋势。  相似文献   

3.
目的 为了使钢表现出更好的吸能特性,以具有较高的强度以及较好的塑性。方法 提出了一种新型一步法成形碳配分一体化工艺,即热冲压-动态碳配分(HS-DP)工艺。所提出的HS-DP工艺采用盐浴热处理的方式进行物理模拟。采用扫描电子显微镜(SEM)、X射线衍射(XRD)和拉伸试验等方法,研究了新工艺中的冷却速率对低碳先进高强钢的微观组织和力学性能的影响。针对冷却速率对残余奥氏体含量的影响进行了分析,重点研究了残留奥氏体的体积分数和碳含量对钢伸长率的影响。结果 经过HS-DP工艺处理的钢显微组织主要由初始淬火态马氏体相、最终淬火态马氏体相和残余奥氏体相共存组成。结论 实验钢表现出优异性能,说明了热冲压动态碳配分工艺前景广阔。  相似文献   

4.
为了探索一种800 MPa级冷轧耐候双相钢的连续冷却转变规律及退火后组织性能变化,利用For-master-FⅡ全自动相变仪及连续退火模拟实验机,进行了连续冷却转变(CCT)曲线的测定及连续退火实验.结果表明:实验钢的过冷奥氏体在很低的冷却速度(0.5℃/s)下即可发生马氏体转变,而珠光体转变较少.当冷速为80℃/s时,仅发生马氏体转变;退火后实验钢显微组织中的马氏体呈带状分布,经最优工艺退火后实验钢的显微组织为多边形铁素体(79%)+块状马氏体(16%)+细小的残余奥氏体(5%),残余奥氏体主要分布于马氏体晶粒内部或铁素体的晶界处;实验钢屈服强度为387 MPa,抗拉强度为863 MPa,延伸率为18%,强塑积达到15534.  相似文献   

5.
左智成  苏钰  李军 《材料导报》2021,35(12):12156-12160
第三代高强度Q&P(淬火配分)钢作为一种新型的热处理钢,其显微组织以马氏体和残余奥氏体为主,因而具有高强度和高延伸率.本工作利用Gleeble热模拟试验机改变加热速率(5℃/s、50℃/s、300℃/s)和配分时间(10 s、60 s)对Q&P钢的组织和性能进行研究.通过扫描电镜(SEM)、电子背散射衍射(EBSD)和X射线衍射(XRD)分别研究了Fe-0.23C-1.55Si-1.92Mn-0.04Al钢的晶粒形貌、尺寸和物相;然后通过Gleeble热模拟试验机对其进行拉伸测试.研究结果表明,提高加热速率可以细化原奥氏体晶粒,进而在二次淬火时获得的二次马氏体尺寸也随之减少;当配分时间为10 s和60 s时,加热速率的提高有利于提高残余奥氏体的含量;当加热速率为300℃/s、配分时间为60 s时,试样的强塑积可达37.9 GPa·%.  相似文献   

6.
研究了Q460C钢连续冷却过程中奥氏体转变过程以及转变产物的组织变化,为制定生产工艺提供参考依据。由Q460C钢的连续冷却转变曲线(CCT图)和不同冷却速率的显微组织可知,当冷却速率较低时,形成粗大的块状铁素体和珠光体;当冷却速率大于3℃/s时出现贝氏体,形态似针状铁素体,其形成温度在450~600℃;当冷却速率大于15℃/s时,发生马氏体转变,马氏体的转变点约为350℃。  相似文献   

7.
采用扫描电镜二次电子/背散射成像模式(SEM-SE/BSE)、能谱分析(EDS)和复相分离技术(MPST)研究P92钢试样于1060℃/1h奥氏体化后以不同方式冷却(空冷/置炉门口冷:缓冷)经760℃/2h回火(空冷)后再经650℃时效后的组织及硬度的稳定性。结果表明:P92钢时效后的显微组织均为基体相与析出相(M23C_6相和Laves相);奥氏体化后冷却方式对650℃时效后组织及试样硬度有明显影响:缓冷时效试样的析出总量大而硬度低,且Laves相的体积分数/颗粒粗化倾向明显较大,M23C_6相体积分数较小;在650℃时效1000h和3000h期间,空/缓冷时效试样的硬度基本不变/下降;此外,650℃时效试样组织及硬度的稳定性与过冷奥氏体及马氏体的稳定性有关。因此,工业现场管道奥氏体化后应尽快散热。  相似文献   

8.
采用膨胀法结合金相检验和硬度测试,在相变膨胀仪上测定了30CrNiMo8钢的临界点温度,绘制了过冷奥氏体连续冷却转变曲线,研究了不同冷却速率对30CrNiMo8钢显微组织和硬度的影响。结果表明:当冷却速率为0.02~7℃·s~(-1)时,随着冷却速率的增加,30CrNiMo8钢的显微组织由粒状贝氏体为主逐渐转变为马氏体为主,硬度也逐渐升高;马氏体转变的临界冷却速率为1.0~1.5℃·s-1,30CrNiMo8钢的淬透性较好。  相似文献   

9.
探索合理的轧后冷却工艺制度对降低热轧齿轮钢棒材冷后硬度具有重要的指导意义.本文通过热模拟试验机进行冷却工艺试验,研究了单道次变形后不同冷却速度和不同终冷温度对齿轮钢20CrMnTi组织转变与硬度的影响.研究结果表明:在快冷速(10, 50 ℃/s)条件下,再结晶晶粒长大受到抑制,奥氏体晶粒细化,晶界面积增大,铁素体形核质点增多; 当终冷温度升高时,高温区铁素体相变时间增加,冷后组织中铁素体体积分数增大,硬度值降低.在终冷温度850 ℃时铁素体体积分数达到最大值58%,硬度值相应降低为264HV.在慢冷速(0.1 ℃/s)条件下,再结晶晶粒长大明显,铁素体形核质点减少,但随着终冷温度降低,两相区中C元素扩散时间延长,铁素体形核长大时间增加,冷后组织中铁素体体积分数增大,硬度值降低.在终冷温度760 ℃时铁素体体积分数达到最大值48%,相应硬度降低为最小值240HV.在1 ℃/s条件下,终冷温度对铁素体体积分数及硬度影响较小,铁素体体积分数和硬度分别在34%±4%和(282±5)HV范围内波动.  相似文献   

10.
将含铜5Cr15MoV马氏体不锈钢在不同温度热处理并使用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射(XRD)、透射电子显微镜(TEM)、硬度测试和电化学测试等手段对其表征,研究了淬火温度对其组织、硬度以及耐蚀性能的影响。结果表明,铜元素的添加提高了材料中残余奥氏体的体积分数,而使其硬度降低。淬火后钢中的未溶碳化物为fcc结构的富铬M23C6型碳化物,铜元素的添加对5Cr15MoV马氏体不锈钢中碳化物的尺寸和形貌没有明显的影响,但是使其耐蚀性能略微降低。随着淬火温度从1000℃提高到1100℃,未溶碳化物逐渐减少,耐蚀性提高。残余奥氏体的含量也随着淬火温度的提高而增多,碳化物与残余奥氏体的共同作用使淬火后钢的硬度曲线呈抛物线状并在1050℃达到最大值。  相似文献   

11.
对一种钒微合金化TRIP钢进行冷轧连续退火,研究了钢的组织特征和力学性能。结果表明,贝氏体基TRIP钢的组织由贝氏体/马氏体和少量的残余奥氏体组成。随着贝氏体区等温时间的延长,钢的抗拉强度下降,屈服强度和延伸率提高。残余奥氏体由块状向薄膜状转变,体积分数增加,薄膜状残余奥氏体主要分布在贝氏体板条间,厚度为50-90 nm。在400℃等温180 s连续退火钢板呈现出相对低抗拉强度(960 MPa)、高屈服强度(765 MPa)和高延伸率(22.0%)的特性,而且加工硬化指数(0.20)、各向异性指数(0.94)和强塑积(21120 MPa.%)也较为优良。  相似文献   

12.
采用分离式Hopkinson压杆对热冲压淬火-配分(HS-Q&P)钢在0~12000 s^(-1)应变速率范围内进行动态压缩实验,利用SEM,EBSD,XRD等分析表征手段探究动态压缩过程中试样的变形行为。结果表明:实验钢在不同速率下的变形行为基本相似且分为3个阶段,在平台处应力有小幅度增加,增幅更多体现在应变上。在压缩过程中出现的绝热升温会带来软化效应。残余奥氏体的存在会提高实验钢的强度和塑性变形能力。钢中残余奥氏体发生相变诱导塑性(transformation induced plasticity,TRIP)效应减少的体积分数与马氏体增加的体积分数基本一致,证明TRIP效应为钢中主要的强化机制。同时,通过SEM可观测到残余奥氏体发生TRIP效应转变成细小针状马氏体,随着应变速率增加,晶格畸变越来越严重,EBSD图像中可以观测到部分形变孪晶,在不同应变速率下,〈001〉取向的晶粒都会更容易产生形变孪晶。  相似文献   

13.
在Gleeble-1500热模拟试验机上研究了20SiMn3NiA钢在不同连续冷却条件下相和组织变化,用热膨胀法测定了该钢的连续冷却转变曲线(动态CCT曲线)。研究结果表明,20SiMn3NiA钢中的Mn、Ni、Si等合金元素能有效地阻止铁素体和珠光体的形成,故20SiMn3NiA钢的过冷奥氏体连续冷却转变曲线只有马氏体和贝氏体相变区。当临界冷却速度大于1℃/s时,20SiMn3NiA钢就可以获得板条状马氏体组织,且随着冷却速度的增大,马氏体组织变得越来越细。与静态CCT曲线相比,形变使动态CCT曲线的Ms点升高,奥氏体稳定性降低,形变细化了马氏体和贝氏体组织,使20SiMn3NiA钢在1℃/s的冷却速率下产生较高的强度。  相似文献   

14.
为研究焊接对800 MPa级Ti、Nb复合微合金化析出强化超细晶粒钢组织性能的影响.运用Gleeble3500热模拟试验机,对实验钢进行单道次焊接热循环试验,并研究冷却速度、冷却时间t8/5对焊接热影响区粗晶区(CGHAZ)组织、性能的影响.结果表明:冷却速度5~15℃/s,CGHAZ的组织为贝氏体,冷却速度进一步增大,会出现马氏体.随着冷却时间t8/5的增加,原奥氏体晶粒尺寸逐渐增加,硬度值逐渐降低,冲击韧性先上升后下降.t8/5为20~120 s时,CGHAZ显微硬度(223~250.4 HV)均小于母材的显微硬度(270.6 HV),出现软化现象,t8/5为20 s时,冲击吸收功最高,为18.2 J,但仅有母材的25.3%.经历焊接热循环后,奥氏体晶粒粗化以及CGHAZ出现贝氏体组织是导致脆化的主要原因.  相似文献   

15.
将低温贝氏体相变前淬火得到由马氏体、贝氏体铁素体和残余奥氏体组成的纳米贝氏体钢,使用扫描电镜(SEM)、X射线衍射(XRD)和透射电镜(TEM)等手段观察在不同温度回火的纳米贝氏体钢的显微组织和硬度变化,研究了预相变马氏体对纳米贝氏体钢热稳定性的影响。结果表明:含有马氏体的纳米贝氏体钢在中低温(473~773 K)回火后其硬度比回火前的高,回火温度高于823 K其硬度迅速下降到266.2HV(923 K)。预形成的马氏体在473~573 K回火后向附近的残余奥氏体排碳,后者的碳含量提高到峰值1.52%,提高了残余奥氏体的热稳定性,延迟后者在高温时的分解,从而提高了纳米贝氏体钢的高温热稳定性;回火温度高于723 K则残余奥氏体分解成碳化物,贝氏体铁素体粗化、回复形成新的铁素体晶粒。  相似文献   

16.
Q345钢奥氏体连续冷却转变曲线(CCT图)   总被引:4,自引:0,他引:4  
研究了Q345钢连续冷却过程中奥氏体转变过程及转变产物的组织和性能,为制定生产工艺提供参考依据.利用膨胀法结合金相-硬度法,得到不同冷却速度连续冷却时的膨胀曲线和相应的金相组织及硬度,用DTA法及膨胀法测定其临界点Ac1、Ac3以及Ms,获得了Q345钢的连续冷却转变曲线(CCT图).由CCT图和不同冷却速度的显微组织照片可知,当冷却速度比较低时,形成较粗大的块状铁素体和珠光体,当冷却速度大于0.5℃/s时出现贝氏体,形态似针状铁素体,其形成温度在450~600℃左右,当冷却速度大于20℃/s时,发生马氏体转变,马氏体转变点约为400℃.  相似文献   

17.
依据Thermo-Calc计算设计了一种成分为Fe-0.8C-2Mn-1.5Si-1.5Cr-0.25Mo-0.25Ni-1Al-0.25Co-0.1V可用于制造钢丝的纳米贝氏体钢,使用热膨胀相变仪、扫描电镜(SEM)、X射线衍射(XRD)、透射电镜(TEM)和拉伸实验等手段研究了等温淬火温度和时间对其组织和力学性能影响。结果表明:这种纳米贝氏体钢低温等温淬火后的组织,由纳米结构的贝氏体铁素体板条、残余奥氏体和少量的马氏体组成。随着等温淬火温度的提高相变速率随之提高,贝氏体铁素体的体积分数增大。随着等温淬火时间的延长,贝氏体铁素体的体积分数增大而过冷奥氏体的量减少,在室温下生成的块状M/A岛的尺寸减小和体积分数降低,碳的配分使过冷奥氏体的稳定性提高,M/A岛中的脆性马氏体比例大幅度降低,拉伸断口由混合型断裂向准解理断裂转变。将这种钢在230℃保温48 h后强塑性匹配最佳,其抗拉强度和屈服强度分别达到1625和1505 MPa,延伸率达到34.5%。  相似文献   

18.
通过对马氏体的显微组织进行分析,并结合线膨胀试验得到的相变动力学信息研究了30CrNi3MoV低合金超高强钢中的马氏体相变特征.结果表明:淬火冷却30CrNi3MoV钢的相变产物包括低碳板条状和高碳针状两种马氏体形态,两者的形成在动力学曲线中截然分开.板条马氏体形成于Ms以下的较高温(310℃~260℃),相变过程中发生了碳的重新分配,造成富碳奥氏体微区的形成;高碳针状马氏体形成于Ms以下的较低温(260℃~170℃),由富碳奥氏体微区转变而成.板条马氏体形成速率远高于针状马氏体.  相似文献   

19.
设计制备一种中碳合金钢34SiMn2CrNiMo,通过对淬火-配分(Q&P)热处理试样的显微组织表征和力学性能测试,建立工艺-组织-性能的关系,结合热膨胀相变行为研究结果,探讨淬火中止温度TQ、加热模式、配分温度TP和配分时间tP对组织演变的影响规律并进行强韧性机理分析。结果表明:实验钢经过Q&P处理后可以获得马氏体+残余奥氏体的复相组织,从而大幅提高强塑性。在最佳处理状态组织中残余奥氏体体积分数约为24%,屈服强度为1053 MPa,抗拉强度为1607 MPa,伸长率为24.9%,强塑积为40.0 GPa·%。为了避免生成块状二次马氏体,实验钢最佳淬火温度应位于马氏体相变开始温度Ms以下150℃左右。实验钢不完全淬火后缓慢加热比快速加热配分能获得更多的残余奥氏体,钢的塑韧性提高更明显。实验钢在400℃配分时Q&P组织和性能相对稳定,而在450℃配分时残余奥氏体体积分数随时间延长而减少,导致屈服强度和伸长率同步下降。  相似文献   

20.
6063铝合金挤压型材的TTP曲线测定及其应用研究   总被引:1,自引:0,他引:1  
通过中断淬火技术测定了6063铝合金挤压型材的时间-温度-性能(TTP)曲线,并通过透射电子显微镜观察其微观组织,采用淬火因子分析法预测不同淬火速率对合金硬度的影响.研究表明,6063挤压型材的TTP曲线鼻尖温度约为360℃,淬火敏感区间为280~410℃.等温保温时,过饱和固溶体分解析出无强化效果的β平衡相,会削弱时效强化效果,在360℃附近的相变速率最快,随着保温时间的延长,粗大β相数量和尺寸增加.为了在较好的时效强化效果和较小的残余应力之间求得平衡,6063挤压型材在线淬火时,在淬火敏感区间的冷却速度最好略大于15℃/s,高于410℃和低于280℃时可适当降低冷却速率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号