首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《功能材料》2021,52(9)
采用硫铝酸盐水泥,根据设计配比,配制了硫铝酸盐水泥基高性能混凝土,探究了硫铝酸盐水泥不同掺量(0,3%,6%和9%(质量分数))对高性能混凝土力学性能(抗压强度)和耐久性能(侵蚀性)的影响。通过XRD、SEM、热分析和力学性能分析等对硫铝酸盐水泥基高性能混凝土进行了表征。结果表明,随着硫铝酸盐水泥掺量的增加,钙矾石(AFt)的衍射峰逐渐增强,水化反应加快,高性能混凝土的结构变得更加致密;所有试样中的六方板状的Ca(OH)_2均比较厚,且呈现出片层状,整体结构的致密性比较接近,而随着硫铝酸盐水泥掺量的增加,整体的密度有变得蓬松的趋势;随着硫铝酸盐水泥掺量的增加,CH的含量增加,前期的水化放热能力得到提高,所有试样在3和28 d时的抗压强度均呈现出逐渐增大的趋势,当硫铝酸盐水泥的掺量为9%时,试样的抗压强度在28 d达到了最大值41.1 MPa,相比3 d增加了19.83%;随着硫铝酸盐水泥掺量的增加,高性能混凝土试样的强度损失逐渐增加,耐久性变差,当硫铝酸盐水泥的掺量为9%时,腐蚀90 d的强度损失率达到了最大值10.3%。  相似文献   

2.
《中国粉体技术》2016,(3):40-45
为了研究砒砂岩对硅酸盐水泥和硫铝酸盐水泥物理性能的影响,采用单因素多水平梯度实验,通过不同砒砂岩掺量的对比,测定硅酸盐水泥和硫铝酸盐水泥的凝结时间、标准稠度用水量和胶砂强度等性能。结果表明:砒砂岩对硅酸盐水泥和硫铝酸盐水泥皆有促凝作用,当砒砂岩掺量质量分数为5%时硅酸盐水泥的初凝时间会缩短30%,硫铝酸盐水泥初凝时间缩短47%,硅酸盐水泥和硫铝酸盐水泥的标准稠度用水量分别增加6.6%和21.7%;砒砂岩掺量质量分数为10%时,硅酸盐水泥的3 d和28 d的强度分别增加7.2%和6%,对其力学性能有较大影响;掺入砒砂岩后,硫铝酸盐水泥强度降低,且随掺量增加,抗压强度降幅增大。  相似文献   

3.
研究了硅酸盐水泥和铝酸盐水泥对石膏基自流平材料流动度、凝结时间、力学性能和耐水性能的影响,通过X射线衍射仪、量热仪、压汞仪和环境扫描电子显微镜微观测试方法对水化产物、水化热、孔结构、微观形貌等进行分析表征。结果表明,随着硅酸盐水泥掺量的增加,初始流动度增大,30min流动度损失减小,凝结时间缩短,掺加铝酸盐水泥对流动度、凝结时间规律与硅酸盐水泥相似;随着硅酸盐水泥掺量的增加,力学性能和耐水性能呈先增加后降低趋势,当掺量为8%时,达到最优;28d抗折强度和耐水性能随着铝酸盐水泥掺量的增加,波动比较大,在13%掺量时出现最低点,抗压强度随着铝酸盐水泥掺量的增加呈稳步上升趋势;掺入硅酸盐水泥和铝酸盐水泥均出现钙矾石的微弱衍射峰。  相似文献   

4.
以煤矸石、脱硫石膏、石灰为主要原料,采用水热合成-低温煅烧方法制备了硫铝酸钙-贝利特水泥熟料,通过X射线衍射(XRD)、扫描电镜(SEM)等分析了水热合成物、煅烧试样及水化产物的矿物相,利用等温量热仪测定了水泥早期水化放热随时间的变化,并测定了水泥的力学性能。结果表明:在120℃下水热合成前驱体后再经煅烧,可在1 050℃低温下制成硫铝酸钙-贝利特水泥熟料。与一步法相比,该低温水泥的早期水化放热速率较高。当水泥中的二水石膏掺量为13%(质量分数)时,水泥1d、28d的抗压强度分别为30.2 MPa和57.3 MPa,28d的水化产物主要为长纤维状的AFt。  相似文献   

5.
杨清  张秀芝  刘迪  张翔  尤紫阳 《材料导报》2018,32(Z2):517-521, 534
对普通硅酸盐(P·O)-硫铝酸盐(R·SAC)复合胶凝体系的凝结时间、胶砂强度进行了分析,利用等温量热仪、综合热分析仪(TG-DSC)、扫描电镜(SEM)、X射线衍射仪(XRD)等从水化速率及水化产物微观形貌等方面分析了复合胶凝体系的水化机理。结果表明:当R·SAC掺量约为10%时,复合胶凝体系的凝结时间相比P·O明显缩短,早期强度提高幅度较大,同时也能获得较大幅度的后期强度增长,力学性能较纯组分水泥性能优越。复合胶凝体系的早期水化速率和放热量高于单组分水泥。随着R·SAC的掺入,复合胶凝体系的水化产物中钙矾石(AFt)增多,Ca(OH)2晶体减少,且AFt的生成量越多,越有利于早期强度的发展,当R·SAC掺量超过30%时,Ca(OH)2消失。  相似文献   

6.
研究了常温下硝酸铵钙对硫铝酸盐水泥浆体的流动度、凝结时间、抗压强度、电阻率及浆体内部温度、水化热、水化产物和孔结构的影响,对硝酸铵钙的早强作用机理进行了分析。结果表明,当硝酸铵钙的掺量从0增大到5%时,水泥浆体的初始流动度明显增大,凝结时间显著缩短,6 h,1,3,7和28 d抗压强度均显著提高,电阻率变化速率曲线峰值出现的时间逐渐提前,水泥浆体内部温度逐渐升高,温峰出现时间提前;其掺量在2%以内时,水泥水化放热速率明显加快,1 d累积放热量略有增大,钙矾石的生成速率及生成量均增大,硬化水泥浆体的平均孔径、总孔体积和孔隙率减小。由于硝酸铵钙能够明显加快硫铝酸盐水泥的水化进程,使其早期强度显著提高,因此可用作早强剂。  相似文献   

7.
研究了不同掺量纳米SiO_2对硫铝酸盐水泥抗压/抗折强度的影响,即掺入纳米SiO_2使水泥砂浆早期抗压/抗折强度显著提高,后期抗折强度未出现倒缩现象且具有较大的上升空间,掺3%纳米SiO_2水泥砂浆2,8h,1,3,28和56d抗折强度相比空白样分别提高了44.84%,41.80%,37.85%,37.78%,42.32%和65.03%。并通过XRD、SEM-EDS及水化热揭示了强度发展的影响机理。即水化早期的微集料填充作用、结晶成核作用使硬化浆体微观结构均匀密实,并促进了硫铝酸盐水泥8h前的水化;水化后期纳米SiO_2的火山灰效应进一步提高了水泥的水化程度。  相似文献   

8.
《功能材料》2021,52(8)
根据实验配比,制备了硫铝酸盐-硅酸盐复合胶凝体系,通过XRD、SEM、TG-DTG和力学性能分析等对复合胶凝体系进行了表征,探究了不同硫铝酸盐掺量下复合胶凝体系的物相结构、显微形貌、热性能和力学性能。结果表明,硫铝酸盐-硅酸盐复合胶凝体系中主要检测到Ca(OH)_2、Mulite、钙矾石(AFT)、水硫铝钙石(Kuzelite)、单硫型硫铝酸钙(AFm)和Ca_3SiO_5等产物相,随着硫铝酸盐掺量的增加,体系水化产物中Ca(OH)_2的峰均有降低趋势;不同硫铝酸盐掺量的复合胶凝体系的结构致密性相差不大,随着硫铝酸盐掺量的增加,大量针状的钙矾石(AFT)的含量明显增加,块状的Ca_3SiO_5含量减少;所有复合胶凝体系的失重曲线规律较为相似,且掺杂硫铝酸盐水泥的体系的失重率均明显高于不掺杂的试样;随着硫铝酸盐掺量的增加,复合胶凝体系在1,3和28 d的抗压强度均呈现逐渐增大的趋势,当硫铝酸盐的掺量为25%(质量分数)时,复合胶凝体系在28 d的抗压强度达到了最大值49.3 MPa,相比在1 d时36.5 MPa,增加了35.1%。  相似文献   

9.
《功能材料》2021,52(7)
根据设计配比,制备了普通硅酸盐-硫铝酸盐水泥复合凝胶体系。通过改变普通硅酸盐水泥和硫铝酸盐水泥的质量比、水胶比和减水剂用量等参数,采用净浆流动度、凝胶时间、结石率、抗压强度和竖向膨胀率等实验,探究了普通硅酸盐-硫铝酸盐水泥复合凝胶体系的性能影响因素。结果表明,当硫铝酸盐水泥的用量为70%(质量分数)、水胶比为0.5、减水剂用量为0.5‰(质量分数)时,复合胶凝体系的流动度最大,达320 mm,可注性好;其初凝和终凝时间分别为6和14 min,凝胶时间短;其结石率为100%,28 d竖向膨胀率约为0.14%,无需二次注浆;其28 d抗压强度为43 MPa,加固强度高。适量的硅灰和硅渣的掺杂可以提高复合胶凝体系后期的抗压强度、抗折强度和流动度,当硅灰掺量为10%(质量分数)时,复合胶凝体系3和28 d的抗压强度、抗折强度出现了峰值;当硅渣掺量为15%(质量分数)时,复合胶凝体系28 d的抗压强度和抗折强度达到最高;当硅渣掺量为10%(质量分数)时,复合胶凝体系流动度达到334 mm。  相似文献   

10.
江苏宜兴煤矸石的矿物组成以高岭石和石英为主,将其于550~950℃温度范围内煅烧4h后制成热活化煤矸石样,应用比强度指标分析各活化样的火山灰效应,结果显示750℃煅烧煤矸石对水泥体系的火山灰贡献率较高.将其替代水泥后,随着替代量的增加,体系标准稠度用水量增加,凝结时间延长,胶砂流动度和胶砂强度均不断降低,但当掺量为20%时,热活化煤矸石水泥的强度可以达到42.5级水泥强度标准;当掺量增至40%时,仍可满足32.5级水泥强度标准.热活化煤矸石水泥水化过程的红外光谱分析(IR分析)图谱显示,随着水化龄期的延长,活性矿物偏高岭石和水泥水化产物Ca(OH)2的特征峰均不断减弱.  相似文献   

11.
通过正交试验研究了硫铝酸盐复合水泥中不同掺量的普通硅酸盐水泥、石膏、硅灰及粉煤灰对其强度、自收缩以及水化热的影响。结果表明:普通硅酸盐水泥及石膏的掺入显著改变了硫铝酸盐复合水泥水化进程,硅灰及粉煤灰是影响后期强度的主要因素;自收缩试验结果表明普通硅酸盐水泥和石膏是影响硫铝酸盐复合水泥水化早期自收缩的主要因素;水化热测试结果表明粉煤灰和普通硅酸盐水泥在水化前6 h起到显著作用,粉煤灰降低了水化放热,而普通硅酸盐水泥增加水化放热;硅灰及石膏对6~24 h水化放热影响显著。结合XRD及SEM测试结果,表明普通硅酸盐水泥和石膏的存在加速了硫铝酸盐复合水泥水化早期钙矾石生成,随着石膏浓度的下降,发生转晶(AFm),随着后期硫铝酸盐水泥中β-C2S的水化以及硅灰、粉煤灰的火山灰反应产生C-S-H凝胶,使得体系致密化。  相似文献   

12.
利用含碳量高、火山灰活性较低的堆存粉煤灰为原料,用水热合成-低温煅烧方法制备粉煤灰贝利特水泥,研究了配合料CaO掺量与在97℃±2℃下的蒸养时间、煅烧温度和煅烧时间对前驱物和粉煤灰贝利特水泥的组成及其基本物理力学性能的影响。结果表明:在97℃±2℃蒸养和800℃煅烧,粉煤灰中的莫来石和石英几乎不与CaO发生反应;800℃煅烧的粉煤灰贝利特水泥熟料中主要水硬性矿物为α’L-C_2S和C_(12)A_7,当煅烧温度达900℃或更高时,贝利特以活性较低的β-C2S存在,并且熟料中有水化活性很低的钙铝黄长石形成。CaO掺量为30%的石灰-粉煤灰配合料在97℃蒸养10h后经800℃煅烧1h,制得28d抗压强度达到30.2 MPa的粉煤灰贝利特水泥。粉煤灰贝利特水泥凝结快,可用于快修工程,但其需水量大,硬化浆体结构相对疏松,孔隙率较大。  相似文献   

13.
马保国  朱艳超  胡迪  李海南 《功能材料》2013,44(12):1763-1767
利用维卡仪、水化放热速率、XRD、TG-DSC和SEM等测试手段,研究了甲酸钙(Ca(HCOO)2)对硫铝酸盐水泥凝结时间、水化历程和水化产物及微观形貌的影响。结果表明,Ca(HCOO)2可明显促进硫铝酸盐水泥的凝结,并缩短初凝和终凝时间间隔;显著缩短了硫铝酸盐水泥的水化诱导期,且使水化加速期提前,使第一水化热峰值提高32%,但对水化稳定期的水化放热速率无明显影响;Ca(HCOO)2可以提高硫铝酸盐水泥水化环境的碱度,在早期提高了水化产物钙矾石(AFt)的结晶度,水化早期生成的水化产物结构致密,但并不改变水化稳定期的水化产物和微观形貌。  相似文献   

14.
研究了重金属离子Cr~(3+)和Pb~(2+)对硅酸盐水泥、硫铝酸盐水泥及混掺水泥(普通硅酸盐水泥与硫铝酸盐水泥进行混掺)三种水泥的浆体凝结时间和力学性能的影响,并借助X射线衍射技术(XRD)和电感耦合等离子体发射光谱(ICP)等研究了水泥水化产物特征、重金属元素在水泥浆体中的固化方式与溶出特性。结果表明:Cr~(3+)对三种水泥均产生促凝作用,而Pb~(2+)对普通硅酸盐水泥和混掺水泥产生缓凝作用,对硫铝酸盐水泥产生促凝作用。Cr~(3+)和Pb~(2+)的掺加引起AFt和Ca(OH)_2形成量的变化,影响程度与水泥品种有关,掺加Cr~(3+)的28d浆体中有新相Ca_2Cr(OH)_7·3H_2O生成。所研究的三种水泥中,硅酸盐水泥对Cr~(3+)的固化效果最好,当Cr~(3+)掺量为1%时,其Cr~(3+)浸出浓度仅为0.177mg/L;而硫铝酸盐水泥对Pb~(2+)的固化效果最好,当Pb~(2+)掺量为1%时,其Pb~(2+)浸出浓度仅为0.0064mg/L。  相似文献   

15.
本实验采用不同量的BaSO4取代C4A3 ̄S中的CaSO4,合成了一系列新型含钡硫铝酸盐矿物.利用XRD、IR、SEM等测试手段,研究了在外掺一定量石膏前提下的水化过程,确定了系统的水化产物主要为AFt、BaSO4和AH3凝胶,得出了含钡硫铝酸盐水泥早强快硬的本质原因.  相似文献   

16.
通过掺入氧化石墨烯(GO)及调控水灰比制备了高性能及超高性能水泥基复合材料,当水灰比为0.26及GO掺量为0.03%和0.05%时,水泥基复合材料的抗压强度和抗折强度分别为125.6 MPa、146.7 MPa和15.6 MPa、18.3 MPa。当水灰比为0.18及GO掺量为0.03%和0.05%时,水泥基复合材料的抗压强度和抗折强度分别为168.6 MPa、181.3 MPa和26.9 MPa、29.4MPa。水泥基复合材料的抗渗透、抗冻融、抗碳化等性能得到了显著提高。通过SEM观察水泥基体的微观形貌,发现水泥水化产物成为了形状规整的水化晶体,并且交织交联成为规整致密的花状微观形貌。XRD结果表明,规整形状水化晶体是由多种水泥水化晶体复合杂化形成的复合晶体。  相似文献   

17.
范雨生  王茹 《材料导报》2023,(9):278-284
为厘清纳米二氧化硅(NS)和丁苯共聚物乳液(SB)在硫铝酸盐(CSA)水泥中的协同作用,同时解决SB/CSA水泥复合砂浆凝结时间长、抗压强度低的问题,采用NS和SB对CSA水泥砂浆进行复合改性,研究改性复合砂浆物理力学性能随NS掺量的变化,并通过测定水化放热及水化产物分析NS在SB/CSA水泥复合砂浆中的作用机制。结果表明:NS可有效缩短SB/CSA水泥复合砂浆的凝结时间,提高其抗压强度,并与SB对CSA水泥砂浆抗折强度提升具有协同作用;NS最佳掺量为1.5%,此时与不加NS的纯SB改性砂浆相比,28 d抗压和抗折强度分别提高了28%、30%。同时,掺入NS会降低复合砂浆的流动度,提高表观体积密度,降低含气量和干燥收缩率,并略微降低毛细孔吸水率。NS可通过促进无水硫铝酸钙和硫酸钙反应,进一步加快SB/CSA水泥复合浆体的水化进程,提高钙矾石的含量,从而缩短凝结时间并提高力学强度。  相似文献   

18.
为探索水泥窑协同处置含铬固体废弃物的可行性,通过测定熟料的f-CaO含量、强度、铬浸出浓度,以及分析熟料的矿物、水化产物和水化放热,研究了CrO3对熟料烧成、水化及浸出毒性的影响规律及机制。结果表明:当CrO3掺量低于2%时,熟料的f-CaO含量和3d、28d、90d强度随掺量的变化不明显;Cr(Ⅵ)/∑Cr浸出浓度随CrO3掺量增加而增大,随养护龄期延长而减小。当CrO3掺量小于0.25%时,熟料Cr(Ⅵ)浸出浓度均低于0.05mg/L,符合Ⅱ类地表水环境质量标准限值;当CrO3掺量较高时,抑制C3S形成,并显著延缓水化;熟料对铬的固化可归因于熟料矿物和水化产物对铬的固溶和包裹。掺加少量CrO3对熟料烧成、水化、性能均无不利影响,产品的环境安全性能够得到保证,水泥窑协同处置含铬废弃物是值得深入研究的技术途径。  相似文献   

19.
邢亚兵  王毅  胡凯伟 《材料导报》2017,31(Z1):402-405
通过掺入不同量的超细矿渣粉,研究其对普通硅酸盐水泥凝结时间、标准稠度用水量以及水泥胶砂流动性和强度的影响。结果表明,水泥浆体的初凝、终凝时间在矿渣粉掺量为5%(质量分数,下同)时有所缩短,而随着超细矿渣粉掺量的增加,初凝时间都有所延长,在掺量为20%时初凝时间最长。然而终凝时间的变化不大,只有掺量为30%时稍有延长;水泥的标准稠度用水量先减少后增加,在掺量为20%时最小;随着超细矿渣粉掺量的增大,水泥胶砂的各龄期抗折强度、3d抗压强度不断提高,7d、28d抗压强度在掺量为20%时达到最大值,之后有所降低。掺入超细矿渣粉后,能通过填充以及与水泥水化产物氢氧化钙发生反应,使水泥中氢氧化钙含量明显降低,水泥微观结构更加密实。  相似文献   

20.
低碱高强硅铝聚合材料的研究   总被引:1,自引:0,他引:1  
以煅烧铝土矿选尾矿、矿渣微粉、水玻璃为主要原料,在800℃下煅烧1 h制备得到高强硅铝聚合材料。用XRD和SEM研究了反应产物的相组成和微观结构,并着重比较研究了该材料与特种水泥的抗化学侵蚀性能差异。结果表明:制备得到的胶砂试样,28d抗折、抗压强度分别达到10.2MPa,60.2MPa;试样分别经3%硫酸钠、3%硫酸镁溶液浸泡28 d后,其强度没有下降反而略有上升,在石膏掺量为7%的硫酸盐环境中,其累计膨胀率远远小于中抗硫酸盐硅酸盐水泥的;分别经5%盐酸、5%硫酸溶液浸泡28d后,其质量损失及强度损失均小于铝酸盐水泥和快硬硫铝酸盐水泥的。制备得到的硅铝聚合材料具有优异的抗硫酸盐侵蚀性能、一定的耐稀酸侵蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号