首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hysteresis of gas-liquid mass transfer rate and the corresponding radial liquiddistribution in a trickle bed reactor are measured to provide evidence for the correlation between thesetwo behaviors.Experimental results indicate that the hysteresis of gas-liquid mass transfer originatesfrom the nonuniformity of the hydrodynamic state of gas-liquid flow and the radial maldistributionof local k_(gia) corresponds very well to the radial maldistribution of liquid flow in the bed.The localliquid flow rate is also found to be nonuniform in the azimuthal direction.In view of maldistributedliquid flow even in the pulsing flow regime,the conventional plug flow model seems oversimplifiedfor describing the behavior of a trickle bed.  相似文献   

2.
The gas‐liquid mass transfer coefficients (MTCs) of a trickle bed reactor used for the study of benzene hydrogenation were investigated. The Ni/Al2O3 catalyst bed was diluted with a coarse‐grained inert carborundum (SiC) particle catalyst. Gas‐liquid mass transfer coefficients were estimated by using a heterogeneous model for reactor simulation, incorporating reaction kinetics, vapor‐liquid equilibrium, and catalyst particle internal mass transfer apart from gas‐liquid interface mass transfer. The effects of liquid axial dispersion and the catalyst wetting efficiency are shown to be negligible. Partial external mass transfer coefficients are correlated with gas superficial velocity, and comparison between them and those obtained from experiments conducted on a bed diluted with fine particles is also presented. On both sides of the gas‐liquid interface the hydrogen mass transfer coefficient is higher than the corresponding benzene one and both increase significantly with gas velocity. The gas‐side mass transfer limitations appear to be higher in the case of dilution with fine particles. On the liquid side, the mass transfer resistances are higher in the case of dilution with coarse inerts for gas velocities up to 3 · 10–2 cm/sec, while for higher gas velocities this was inversed and higher mass transfer limitations were obtained for the beds diluted with fine inerts.  相似文献   

3.
Gas and liquid velocities in laboratory scale trickle bed reactors are one or two orders of magnitude lower than those in commercial reactors. Then, the kinetic data may include the external effects. This shortcoming of laboratory scale trickle bed reactor can be resolved by diluting the catalyst bed with fine inert particles. The catalyst bed dilution increases dynamic liquid holdup, pressure drop, gas–liquid mass transfer coefficient. Hydrogenation of 2-phenylpropene on Pd/Al2O3 was performed with the trickle bed reactor diluted with fine inert particles and the coiled tubular flow-type reactor to compare the kinetics with that of the basket type batch reactor. The trickle bed reactor diluted with fine inert particles is suitable to obtain the reaction rate without external effects even if the liquid velocity is low. The coiled tubular flow-type reactor should be used at high gas velocities.  相似文献   

4.
A novel method for the measurement of wetting efficiency in a trickle‐bed reactor under reaction conditions is introduced. The method exploits reaction rate differences of two first‐order liquid‐limited reactions occurring in parallel, to infer wetting efficiencies without any other knowledge of the reaction kinetics or external mass transfer characteristics. Using the hydrogenation of linear‐ and isooctenes, wetting efficiency is measured in a 50‐mm internal diameter, high‐pressure trickle‐bed reactor. Liquid–solid mass transfer coefficients are also estimated from the experimental conversion data. Measurements were performed for upflow operation and two literature‐defined boundaries of hydrodynamic multiplicity in trickle flow. Hydrodynamic multiplicity in trickle flow gave rise to as much as 10% variation in wetting efficiency, and 10–20% variation in the specific liquid–solid mass transfer coefficient. Conversions for upflow operation were significantly higher in trickle‐flow operation, because of complete wetting and better liquid–solid mass transfer characteristics. © 2010 American Institute of Chemical Engineers AIChE J, 2011.  相似文献   

5.
采用溶氧法测量了三相循环流化床中液相溶氧浓度的轴向分布,并按轴向扩散模型处理实验数据,优化得到气液体积传质系数kLa,同时用光纤探头测量了体系中的气含率和气泡大小分布,计算得到了气液相界面积a和气液传质系数kL,并研究了主要操作条件(表观气速、表观液速和固含率)对气液传质系数的影响规律.  相似文献   

6.
曹俊雅  张绅  张涛  雍玉梅  杨超 《化工学报》2019,70(10):3914-3923
上流式反应器设置在固定床渣油加氢反应器前有利于提高渣油原料适用性,延长装置运行时间。实验研究了上流式反应器气液相间传质,采用五齿柱形氧化铝催化剂模拟工业催化剂颗粒,水溶液模拟渣油,空气模拟氢气,采用无氧水物理吸收和亚硫酸钠化学吸收的方法,测定了在高气液比的条件下上流式反应器床层气液相间传质特性实验。考察了表观气速、表观液速、填料粒径、内构件、催化剂级配和床层高径比对液相体积传质系数和气液相界比表面积的影响规律。实验数据表明,液相体积传质系数随着气、液速的增大而增大;随填料颗粒增大而减小;在床层内安装合适的内构件或增大反应器高径比,能够促进气液相间传质。基于实验数据拟合了适合上流式反应器液相体积传质系数和气液相界比表面积的经验关联式,拟合误差最大分别为12%和24%;表明所建气液相间传质的经验关联式能更好地预测上流式反应器中的气液相间传质特性。  相似文献   

7.
Multiphase fixed‐bed reactors have complex hydrodynamic and mass transfer characteristics. The modeling and scale‐up are therefore difficult. The present work focuses on the role of mass transfer on the effective reaction rate. The catalytic 1‐octene hydrogenation was taken as a model reaction. The reaction rate in the trickle‐bed reactor is by a factor of 20 smaller than (theoretically) in the absence of any mass transfer limitations. For high octene concentrations (> 10 %), the effective reaction rate is limited by the H2 consumption, above all by the gas/liquid and liquid/solid mass transfer. For lower octene concentrations the reaction is zero order with respect to H2 and only depends on the octene consumption, i.e., on the interplay of chemical reaction, L/S and intraparticle mass transfer of octene.  相似文献   

8.
With a particular focus on the connection between liquid flow distribution and gas-liquid mass transfer in monolithic beds in the Taylor flow regime, hydrodynamic and gas-liquid mass transfer experiments were carried out in a column with a monolithic bed of cell density of 50 cpsi with two different distributors (nozzle and packed bed distributors). Liquid saturation in individual channels was measured by using self-made micro-conductivity probes. A mal-distribution factor was used to evaluate uniform degree of phase distribution in monoliths. Overall bed pressure drop and mass transfer coefficients were measured. For liquid flow distribution and gas-liquid mass transfer, it is found that the superficial liquid velocity is a crucial factor and the packed bed distributor is better than the nozzle distributor. A semi-theoretical analysis using single channel models shows that the packed bed distributor always yields shorter and uniformly distributed liquid slugs compared to the nozzle distributor, which in turn ensures a better mass transfer performance. A bed scale mass transfer model is proposed by employing the single channel models in individual channels and incorporating effects of non-uniform liquid distribution along the bed cross-section. The model predicts the overall gas-liquid mass transfer coefficient with a relative error within ±30%.  相似文献   

9.
气液固三相循环流化床气液传质行为   总被引:2,自引:0,他引:2       下载免费PDF全文
<正>气液固三相流化床反应器在石油化工、湿法冶金、环境工程和煤的液化等工业领域得到了广泛应用,其基础研究也取得了很大进展.但是,传统三相床主要应用于低液速(U_L<  相似文献   

10.
Mass transfer rates were determined in a 3.4 cm i.d. trickle-bed reactor in the absence of reaction by absorption measurements and in presence of reaction. Gas flow rates were varied from 0-100 l/h and liquid flow rates from 0-1.5 l/h. The catalyst particles were crushed to an average diameter of 0.054 and 0.09 cm. Mass transfer coefficients remained unaffected by change in gas flow rate but increased with liquid rate. The data from absorption measurements were evaluated with predictions based upon plug-flow and axial dispersion model. Mass transfer coefficients were found greater in case of axial dispersion model than that of plug-flow model specially at low Reynolds number (Re1 < 1).Hydrogenation of α-methylstyrene to cumene using a Pd/Al2O3 catalyst was taken as a model reaction. Intrinsic kinetic studies were made in a laboratory-stirred-autoclave. Mass transfer coefficients were determined using these intrinsic kinetic data from the process kinetic measurements in trickle-bed reactor. Mass transfer coefficients under reaction conditions were found to be considerably higher than those obtained by absorption measurements.Correlations were suggested for predicting mass transfer coefficients at low Reynolds number.The gas to liquid mass transfer coefficients for lower gas and liquid flow rates were determined in a laboratory trickle-bed reactor. The effect of axial dispersion on mass transfer was considered in order to evaluate the experimental data. Three correlations were formulated to calculate the mass transfer coefficients, which included the effect of liquid loading, particle size and the properties of the reacting substances. The gas flow rate influences the gas to liquid mass transfer only in the region of low gas velocities. In the additional investigations of gas to liquid mass transfer without reaction in trickle-bed reactor, the mass transfer coefficients were determined under reaction conditions and the intrinsic kinetics was studied in a laboratory scale stirred autoclave with suspended catalyst. A few correlations are formulated for the mass transfer coefficients. A comparison with the gas-liquid mass transfer coefficient obtained by absorption measurements showed considerable deviations, which were illustrated phenomenologically.  相似文献   

11.
The wetting efficiency of liquid trickle flow over a fixed bed reactor has been measured for a wide range of parameters including operating conditions, bed structure and physico-chemistry of liquid/solid phases. This data bank has been used to develop a new correlation for averaged wetting efficiency based on five different non-dimensional numbers. Finally liquid/solid mass transfer has been determined in partial wetting conditions to analyse what are the respective effects of wetting and liquid/gas flow turbulence. These effects appear to be separated: wetting being acting on liquid/solid interfacial area while the liquid/solid mass transfer coefficient is mainly connected to flow turbulence through the interstitial liquid velocity. A correlation has been proposed for liquid/solid mass transfer coefficient at very low liquid flow rate.  相似文献   

12.
王凯玥  马永丽  李琛  刘明言 《化工学报》2022,73(8):3529-3540
气液固微型流化床兼具微流控系统和宏观流化床的优点,具有潜在的工业应用价值,但是,其应用基础研究十分缺乏。采用床径为1.6、2.0、2.4 mm的微型流化床,平均粒径为160、190、220 μm的玻璃珠,以NaOH水溶液吸收CO2气体为气液传质研究物系,在三相流动研究的基础上,考察了表观气速、表观液速、床径、粒径等对三相微型流化床气液体积传质系数的影响。结果表明:给定其他条件,增加表观气速和表观液速,均使气液体积传质系数增大;表观气速主要改变气含率和气液相界面积,而表观液速主要改变液相传质系数;床径减小,气液相界面积和气液体积传质系数都有所增加;在气液两相微型鼓泡塔中加入固体颗粒,形成三相分散鼓泡流型,当其固含率在0.15~0.30范围内,可显著增强气液传质,其气液体积传质系数是气液微鼓泡塔的1.1~1.5倍;与宏观流化床相比,相同条件下微型床的相界面积为它的5~10倍,是微型流化床具有更大体积传质系数的主要影响因素。  相似文献   

13.
王凯玥  马永丽  李琛  刘明言 《化工学报》1951,73(8):3529-3540
气液固微型流化床兼具微流控系统和宏观流化床的优点,具有潜在的工业应用价值,但是,其应用基础研究十分缺乏。采用床径为1.6、2.0、2.4 mm的微型流化床,平均粒径为160、190、220 μm的玻璃珠,以NaOH水溶液吸收CO2气体为气液传质研究物系,在三相流动研究的基础上,考察了表观气速、表观液速、床径、粒径等对三相微型流化床气液体积传质系数的影响。结果表明:给定其他条件,增加表观气速和表观液速,均使气液体积传质系数增大;表观气速主要改变气含率和气液相界面积,而表观液速主要改变液相传质系数;床径减小,气液相界面积和气液体积传质系数都有所增加;在气液两相微型鼓泡塔中加入固体颗粒,形成三相分散鼓泡流型,当其固含率在0.15~0.30范围内,可显著增强气液传质,其气液体积传质系数是气液微鼓泡塔的1.1~1.5倍;与宏观流化床相比,相同条件下微型床的相界面积为它的5~10倍,是微型流化床具有更大体积传质系数的主要影响因素。  相似文献   

14.
A model is developed based on a two‐stage hydrogenation of pyrolysis gasoline to obtain a C6–C8 cut suitable for extraction of aromatics. In order to model the hydrogenation reactors, suitable hydrodynamic and reaction submodels should be solved simultaneously. The first stage hydrogenation takes place in a trickle bed reactor. The reaction rates of different di‐olefines as well as hydrodynamic parameters of the trickle bed (i.e., catalyst wetting efficiency, pressure drop, mass transfer coefficient and liquid hold‐up) have been combined to derive the equations to model this reactor. The second stage hydrogenation takes place in a two compartment fixed bed reactor. Hydrogenation of olefines takes place in the first compartment while sulfur is eliminated from the flow in the second compartment. These reactions occur at relatively higher temperature and pressure compared to the first stage. The key component in this stage is considered to be cyclohexene, of which the hydrogenation was found to be the most difficult of the olefines present in the feed. The Langmuir‐Hinshelwood kinetic expression was adopted for the hydrogenation of cyclohexene and its kinetic parameters were determined experimentally in a micro‐reactor in the presence of the industrial catalyst. The model was solved for the whole process of hydrogenation, including hydro‐desulfurization. The predictions of the model were compared with actual plant data from an industrial scale pyrolysis gasoline hydrogenation unit and satisfactory agreement was found between the model and plant data.  相似文献   

15.
李友凤  叶红齐  周虎  何显达 《化学工程》2012,40(3):48-52,66
在T型对撞反应器的基础上,对其结构进行改进,设计了旋流锥型对撞、T型旋撞和旋流锥型旋撞(二次旋转)3种撞击流反应器。用化学吸收法测量了这几种不同结构的微反应器在气液二相逆流接触条件下平均相界比表面积α及液相吸收传质系数kL;进而分析了反应器进口结构、尺寸和流体流量等条件对传质性能的影响。结果表明:旋撞比直撞的传质系数大,二次旋撞的比一次旋撞的传质系数要大;撞击区进口尺寸越小,气液流体的流量越大,反应器的传质系数越大;液相传质系数较常规气液接触设备的至少高1—2个数量级,其传质强化的原因主要源于微反应器内相界比表面积大幅度地增加。  相似文献   

16.
Catalytic wet oxidation carried out in a continual three‐phase trickle‐bed reactor contributes to the sustainability of chemical technology. It was found that the hydrodynamics and the mass‐transfer of reactants could have a significant impact on the performance of the trickle‐bed reactor. An aqueous phenol oxidation was tested at different temperatures and liquid feed rates and the activities of both the CuO‐supported catalyst and the extruded active carbon were compared. To avoid the impact of liquid maldistribution, a bed of catalyst particles diluted with fine glass spheres was also used. Rate‐limited conditions of both liquid‐ and gas‐phase presented reactants were determined. Under the conditions of gas component transfer limitation, a better wetting of the diluted catalyst bed can lead to a worsening in the reactor performance due to the lower overall reaction rates. © 2001 Society of Chemical Industry  相似文献   

17.
The stability of the hydrodynamic states corresponding to the operation on two branches of the hysteresis loop of pressure drop was examined for a trickle bed. The effect of nonsteady operation on the pressure drop and the gas-liquid mass transfer rate was investigated with several types of periodical perturbation on gas flow rate. It is found that the pressure drop and mass transfer coefficient obtained during operation under the conditions of the lower branch can be increased up to or even beyond those obtained by following the upper branch of the loop without necessarily traversing along the loop to pass through the pulsing point. These results shed light on the mechanism of performance enhancement by periodical operation of trickle beds and might provide a possible way to improve the operation of trickle bed reactors.  相似文献   

18.
The onset of pulse flow in trickle-bed reactors involving gas-non-Newtonian liquid systems was predicted from a stability analysis of the solutions around equilibrium steady-state trickle flow of a transient two-fluid model based on the volume-average mass and momentum balance equations. The model was developed for the versatile Herschel-Bulkley constitutive rheological equation from which special solutions for plastic Bingham fluids, power-law shear-thinning and thickening fluids, as well as Newtonian fluids were derived. The impact of yield stress, consistency and power-law indices, and temperature and reactor pressure on the trickle-to-pulse flow transition was analyzed theoretically. Model predictions of the trickle-to-pulse transition for gas-non-Newtonian liquid systems were confronted with elevated temperature and pressure experimental transition data obtained for air-0.25 and 0.5 mass(carboxymethylcellulose) CMC solution systems measured by means of an electrical conductivity technique. In addition the model version offspring corresponding to the Newton case (n=1,k=μ?,τ0=0), confronted with measured high temperature/pressure-transition data from this work and high-pressure transition data from Wammes et al. [1990. The transition between trickle flow and pulse flow in a cocurrent gas-liquid trickle-bed reactor at elevated pressure. Chemical Engineering Science 45, 3149; 1991. Hydrodynamics in a cocurrent gas-liquid trickle bed at elevated pressures. A.I.Ch.E. J. 37, 1849] and Burghardt et al. [2002. Hydrodynamics of a tree-phase fixed-bed reactor operating in the pulsing flow regime at an elevated pressure. Chemical Engineering Science 57, 4855] proved equally successful.  相似文献   

19.
The stability of the hydrodynamic states corresponding to the operation on two branches of the hysteresis loop of pressure drop was examined for a trickle bed. The effect of nonsteady operation on the pressure drop and the gas-liquid mass transfer rate was investigated with several types of periodical perturbation on gas flow rate. It is found that the pressure drop and mass transfer coefficient obtained during operation under the conditions of the lower branch can be increased up to or even beyond those obtained by following the upper branch of the loop without necessarily traversing along the loop to pass through the pulsing point. These results shed light on the mechanism of performance enhancement by periodical operation of trickle beds and might provide a possible way to improve the operation of trickle bed reactors.  相似文献   

20.
Catalytic wet air oxidation (CWAO) of an aqueous phenol solution using active carbon (AC) as catalytic material was compared for a slurry and trickle bed reactor. Semi‐batchwise experiments were carried out in a slurry reactor in the absence of external and internal mass transfer. Trickle‐bed runs were conducted under the same conditions of temperature and pressure. Experimental results from the slurry reactor study showed that the phenol removal rate significantly increased with temperature and phenol concentration, whereas partial oxygen pressure had little effect. Thus, at conditions of 160 °C and 0.71 MPa of oxygen partial pressure, almost complete phenol elimination was achieved within 2 h for an initial phenol concentration of 2.5 g dm?3. Under the same conditions of temperature and pressure, the slurry reactor performed at much higher initial rates with respect to phenol removal than the trickle bed reactor, both for a fresh active carbon and an aged active carbon, previously used for 50 h in the trickle bed reactor, but mineralisation was found to be much lower in the slurry reactor. Mass transfer limitations, ineffective catalyst wetting or preferential flow in the trickle bed alone cannot explain the drastic difference in the phenol removal rate. It is likely that the slurry system also greatly favours the formation of condensation polymers followed by their irreversible adsorption onto the AC surface, thereby progressively preventing the phenol molecules to be oxidised. Thus, the application of this type of reactor in CWAO has to be seriously questioned when aiming at complete mineralisation of phenol. Furthermore, any kinetic study of phenol oxidation conducted in a batch slurry reactor may not be useful for the design and scale‐up of a continuous trickle bed reactor. © 2001 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号