首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
An experimental study is carried out to quantitatively assess the dispersion quality of carbon nanotubes (CNTs) in epoxy matrix as a function of CNT variant and weight fraction. To this end, two weight fractions (0.05% and 0.25%) of as-grown, oxidized, and functionalized CNTs are used to process CNT/epoxy nanocomposites. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared analysis of different variants of CNTs are used to establish the efficiency of purification route. While the relative change in mechanical properties is investigated through tensile and micro-hardness testing, thermal conductivity of different nanocomposites is measured to characterize the effect of CNT addition on the average thermal properties of epoxy. Later on, a quantitative analysis is carried out to establish the relationship between the observed improvements in average composite properties with the dispersion quality of CNTs in epoxy. It is shown that carboxylic (-COOH) functionalization reduces the average CNT agglomerate size and thus ensures better dispersion of CNTs in epoxy even at higher CNT weight fraction. The improved dispersion leads to enhanced interfacial interaction at the CNT/epoxy interface and hence provides higher relative improvement in nanocomposite properties compared to the samples prepared using as-grown and oxidized CNTs. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48879.  相似文献   

2.
In order to improve the dispersion of carbon nanotubes (CNTs) in polyimide (PI) matrix and the interfacial interaction between CNTs and PI, 4,4′‐diaminodiphenyl ether (ODA)‐functionalized carbon nanotubes (CNTs‐ODA) were synthesized by oxidation and amidation reactions. The structures and morphologies of CNTs‐ODA were characterized using Fourier transform infrared spectrometer, transmission electron microscopy, and thermal gravimetric analysis. Then a series of polyimide/amino‐functionalized carbon nanotube (PI/CNT‐ODA) nanocomposites were prepared by in situ polymerization. CNTs‐ODA were homogeneously dispersed in PI matrix. The influence of CNT‐ODA content on mechanical properties of PI/CNT‐ODA nanocomposites was investigated. It was found that the mechanical properties of nanocomposites were enhanced with the increase in CNT‐ODA loading. When the content of CNTs‐ODA was 3 wt%, the tensile strength of PI/CNT‐ODA nanocomposites was up to 169.07 MPa (87.11% higher than that of neat PI). The modulus of PI/CNTs‐ODA was increased by 62.64%, while elongation at break was increased by 66.05%. The improvement of the mechanical properties of PI/CNT‐ODA nanocomposites were due to the strong chemical bond and interfacial interaction between CNTs‐ODA and PI matrix. POLYM. COMPOS., 35:1952–1959, 2014. © 2014 Society of Plastics Engineers  相似文献   

3.
This paper reports the results of studies on the effect of phenol functionalization of carbon nanotubes (CNTs) on the mechanical and dynamic mechanical properties of natural rubber (NR) composites. Fourier transform infrared spectrometry (FTIR) indicates characteristic peaks for ether and aromatic rings in the case of phenol functionalized CNT. Although differential scanning calorimetric (DSC) studies show no changes in the glass‐rubber transition temperature (Tg) of NR in the nanocomposites due to surface modification of CNT, dynamic mechanical studies show marginal shifting of Tg to higher temperature, the effect being pronounced in the case of functionalized CNT. Stress‐strain plots suggest an optimum loading of 5 phr CNT in NR formulations and the phenolic functionalization of CNT does not affect significantly the stress‐strain properties of the NR nanocomposites. The storage moduli register an increase in the presence of CNT and this increase is greater in the case of functionalized CNT. Loss tangent showed a decrease in the presence of CNT, and the effect is more pronounced in the case of phenol functionalized CNT. Transmission electron microscopy (TEM) reveals that phenol functionalization causes improvement in dispersion of CNT in NR matrix. This is corroborated by the increase in electrical resistivity in the case of phenol functionalized CNT/NR composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Novel single‐source‐precursors (SSPs), namely carbon nanotube modified poly (methylvinyl) silazane (CNTs‐HTT 1800), were synthesized via amidation reaction of poly (methylvinyl) silazane (HTT 1800) with carboxylic acid functionalized carbon nanotubes (CNTs‐COOH) at the assistance of ZnCl2 catalyst, which was confirmed by means of Fourier transform infrared spectra (FT IR) and transmission electron microscopy (TEM). Besides, the TEM results unambiguously show the homogeneous distribution of the CNTs in the matrix of SSPs while serious aggregation of the CNTs in the matrix of physically‐blended‐precursor. Crack‐free monolithic silicon carbonitride modified by carbon nanotubes ceramic nanocomposites (CNTs‐SiCN) were prepared through pyrolysis of the obtained SSP green bodies at 1000°C. Due to the strong influence of polymer structure on the microstructure of final ceramics, the SSP‐derived CNTs‐SiCN nanocomposites clearly show the homogeneous distribution of the CNTs in the SiCN matrix while the physically‐blended‐precursor derived CNTs‐SiCN nanocomposites exhibit serious aggregation and entangling of the CNTs in the SiCN matrix. With the same CNT content in the feed, the SSP‐derived CNTs‐SiCN nanocomposites possess significant improvements of electromagnetic (EM) absorbing properties compared to those from physically‐blended‐precursors, due to the quality of the dispersion of CNTs in the ceramic matrices.  相似文献   

5.
《Polymer Composites》2017,38(9):1849-1863
Hybrid composites containing endless glass fiber reinforcement and surface‐functionalized carbon nanotubes (CNTs) dispersed in the matrix phase were produced by resin transfer molding (RTM). An efficient surface modification of the nanotubes enhances the compatibility with the matrix system and the dispersion quality, enabling the impregnation process via liquid composite molding. We assessed the quality of the RTM process by newly developed methodologies for the quantification of the filtering of CNTs. First, we established a method to analyze the CNT length distribution before and after injection for thermosetting composites to characterize length‐dependent withholding respectively the size distribution of nanotubes in the hybrid composites. Second, the resulting test laminates were locally examined by Raman spectroscopy and compared to reference (nanocomposite) samples of known CNT content to non‐destructively quantify the local CNT concentration along the resin flow path. Moreover, the thermal and mechanical properties of the modified composites were investigated. The nanocomposites containing 0.5 wt% surface‐functionalized CNTs exhibited superior ductility and increased fracture toughness. Glass fiber hybrid composites containing 0.5 wt% functionalized CNTs in the resin phase exhibited increased fracture toughness in mode I and a slight deterioration in mode II due to the constrained formation of hackles. POLYM. COMPOS., 38:1849–1863, 2017. © 2015 Society of Plastics Engineers  相似文献   

6.
Polymer nanocomposites based on poly (ethylene 2,6‐naphthalate) (PEN) and carbon nanotubes (CNTs) were prepared by direct melt blending with a twin‐screw extruder. Dynamic thermogravimetric analysis was conducted on the PEN/CNT nanocomposites to clarify the effect of CNTs on the thermal decomposition behavior of the polymer nanocomposites. The thermal decomposition kinetics of the PEN/CNT nanocomposites was strongly dependent on the CNT content, the heating rate, and the gas atmosphere. On the basis of the thermal decomposition kinetic analysis, the variation of the activation energy for thermal decomposition revealed that a very small quantity of CNTs substantially improved the thermal stability and thermal decomposition of the PEN/CNT nanocomposites. Morphological observations demonstrated the formation of interconnected or network‐like structures of CNTs in the PEN matrix. The unique character of the CNTs introduced into the PEN matrix, such as the physical barrier effect of CNTs during thermal decomposition and the formation of interconnected or network‐like structures of CNTs, resulted in the enhancement of the thermal stability of the PEN/CNT nanocomposites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
This paper presents the correlation between the functional groups, interfacial microstructure and behavior of load transfer in carbon nanotube (CNT)/epoxy nanocomposites. Nanocomposites consisting of epoxy and CNTs with/without functionalities (amino and epoxide groups) are prepared and characterized to evaluate the CNT-matrix interactions based on strain-sensitive Raman spectroscopy. The results show that nanocomposites filled with functionalized CNTs exhibit a noticeable G′-band shift in tension while those containing pristine CNTs have a marginal shift, suggesting a more efficient load transfer between the epoxy matrix and functionalized CNTs. An interesting observation is that the slope of the G′-band shifts can be either positive or negative, depending on the functional groups on CNTs and the interfacial structures created between the functionalized CNTs and polymer matrix. The mechanisms behind this observation are discussed with reference to fractography and thermo-mechanical properties of nanocomposites.  相似文献   

8.
Ultra high molecular weight polyethylene (UHMWPE) is extensively used as a material in various high‐end applications with superior mechanical properties. Carbon nanotubes (CNTs) reinforced UHMWPE (CNT/UHMWPE) nanocomposite is a promising material that can compensate for the weak durability of UHMWPE. In this study, multiwalled carbon nanotubes were oxidized and silanized using acid mixture and 3‐aminopropyltriethoxysilane, respectively, to improve the interfacial strength between CNTs and UHMWPE. The CNT/UHMWPE nanocomposite was fabricated using these oxidized and silanized CNTs. The treatment effect of CNTs on the wear behavior of the CNT/UHMWPE nanocomposites was investigated through wear tests. The oxidization and silanization of CNTs were confirmed by infrared spectroscopy. Scanning electron microscope analysis showed that the silane‐treated CNT/UHMWPE nanocomposites showed better dispersion and interfacial adhesion between UHMWPE and CNTs becaue of the newly formed functional groups on the CNTs. The friction coefficient and wear rate of silanized CNT/UHMWPE nanocomposite were also found to be lower than those of raw UHMWPE and oxidized CNT/UHMWPE nanocomposite. CNTs were functionalized using oxidation and silanization methods to improve the interfacial adhesion between CNTs and UHMWPE. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

9.
In this study, carboxylic acid functionalized carbon nanotubes (CNTs) were used to modify epoxy with intent to develop a nanocomposite matrix for hybrid multiscale composites combining benefits of nanoscale reinforcement with well‐established fibrous composites. CNTs were dispersed in epoxy by using high energy sonication, followed by the fabrication of epoxy/CNTs composites. The processibility of CNTs/epoxy systems was explored with respect to their dispersion state and viscosity. The dependences of viscosity, mechanical and thermomechanical properties of nanocomposite system on CNTs content were investigated. The dispersion quality and reagglomeration behavior of CNTs in epoxy and the capillary infiltration of continuous fiber with the epoxy/CNTs dispersion were characterized using optical microscope and capillary experiment. As compared with neat epoxy sample, the CNTs nanocomposites exhibit flexural strength of 126.5 MPa for 1 wt% CNTs content and impact strength of 28.9 kJ m?2 for 0.1 wt% CNTs content, respectively. A CNTs loading of 0.1 wt% significantly improved the glass transition temperatures, Tg, of the nanocomposites. Scanning electron microscopy (SEM) was used to examine the fracture surface of the failed specimens. It is demonstrated that the properties of CNTs/epoxy system are dispersion‐dominated and interface sensitive. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

10.
In this study, the synergistic effect of functionalized carbon nanotubes (fCNT) and micron‐sized rubber particles in improving the thermomechanical properties of epoxy resin is demonstrated. fCNT is mixed with carboxyl‐terminated butadiene acrylonitrile toughened epoxy (CTBNTE) by ultrasonication followed by the addition of curing agent and mixing with planetary shear mixer. A significant improvement is noticed in fracture toughness (≈ 200%) and thermal stability (≈ 12 °C) of fCNT‐filled CTBNTE system but only a marginal improvement in fracture toughness and thermal stability of pristine CNT‐filled CTBNTE relative to epoxy. Dispersion of fCNT is better than pristine CNT in the epoxy matrix. Scanning electron microscope (SEM) images of fractured surface of fCNT‐filled CTBNTE reveal plastic deformation zone, stress whitening, and overall rougher surface compared to pristine CNT‐filled CTBNTE. The findings of our work show promise for use of fCNT in conjunction with a rubber toughener as filler for improving the properties of epoxy resin for advanced structural applications.

  相似文献   


11.
As a result of van der Waal's interactions, carbon nanotubes (CNTs) tend to assemble into bundle/rope structures. It is essential to de‐bundle and exfoliate CNTs in polymer solutions in order to utilize their reinforcement potential as far as possible. In this study, a variety of different processing conditions were used to prepare polyacrylonitrile/CNTs composite solutions. The CNT bundle diameter, length, and macro‐scale dispersion homogeneity in those solutions were compared. It was observed that the CNT type, solvent type, and polymer concentration were important factors to determine the CNT bundle sizes in the solutions. The results are expected to be beneficial to obtain well‐dispersed polymer/CNT nanocomposites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42177.  相似文献   

12.
Aramid–multiwalled carbon nanotube (MWCNT) nanocomposites with different CNT loadings were prepared by the solution‐blending technique. Aramid oligomeric chains having reactive amine end‐groups were covalently grafted and wrapped over the surface of acid‐functionalized MWCNTs. The presence of functional groups and surface modification of MWCNTs were studied using Raman, Fourier transform infrared and X‐ray photoelectron spectroscopic and transmission/scanning electron microscopic techniques. Addition of these MWCNTs resulted in a homogeneous dispersion throughout the aramid matrix. Dynamic mechanical thermal analysis showed an increase in the storage modulus and the glass transition temperature involved with α‐relaxations on CNT loading. The coefficient of thermal expansion (CTE) of aramid was reduced on loading with such CNTs. Strong interfacial interactions of the matrix with the surface‐modified CNTs reduced the stress‐transfer problem in the composite material and resulted in higher modulus of 4.26 GPa and a glass transition temperature of 338.5 °C, whereas the CTE was reduced to 101.8 ppm °C?1 on addition of only 2.5 wt% CNTs in the aramid matrix. © 2016 Society of Chemical Industry  相似文献   

13.
Young Seok Song 《Polymer》2006,47(5):1741-1748
Effective elastic properties of the nanocomposites filled with carbon nanotubes (CNTs) are investigated by the asymptotic expansion homogenization (AEH) method. In order to implement the homogenization method, a control volume finite element method (CVFEM) is employed in contrast to the previous studies. It is assumed that the nanocomposites have geometric periodicity with respect to local length scale and the elastic properties of nanocomposites can be represented by those of the representative volume element (RVE). Random orientation of the CNTs embedded in the nanocomposites is considered by using the orientation tensor. The effective elasticity tensor predicted by the homogenization method is compared with analytical and experimental results. In the experiment, the CNT surface is treated by oxygen plasma to improve interfacial bonding between the CNT and the matrix and to disperse the CNTs homogeneously in epoxy resin because the perfect interfacial bonding is presumed in the homogenization method. Homogeneous CNT dispersion is experimentally identified by the field emission scanning electronic microscope (FESEM). It is found that the numerically calculated elastic modulus is in good agreement with that obtained by analytic model.  相似文献   

14.
Jin Ah Kim 《Carbon》2006,44(10):1898-1905
Despite superior properties of carbon nanotubes (CNTs), physical properties of the CNT/epoxy composites are not improved significantly because interfacial bonding between the CNTs and the polymer matrix is weak. CNTs were treated by an acidic solution to remove impurities and modified subsequently by amine treatment or plasma oxidation to improve interfacial bonding and dispersion of nanotubes in the epoxy matrix. The functional groups on the surface of treated CNTs were investigated by X-ray photoelectron spectroscopy. The surface modified CNTs were embedded in the epoxy resin by ultra-sonication and the cured nanotube containing composites were characterized by field emission scanning electron microscopy. Rheological properties of nanotube containing epoxy resin and mechanical properties of the modified CNT/epoxy composites were improved because the modification of CNTs improved dispersion and interaction between the CNT and the epoxy resin.  相似文献   

15.
Peng-Cheng Ma  Ben-Zhong Tang 《Carbon》2010,48(6):1824-1834
The surface, interfacial and dispersion properties of carbon nanotubes (CNTs), and the mechanical properties of the CNT/epoxy composites affected by CNT functionalization are investigated. It is demonstrated that there exists strong correlations between amino-functionalization, dispersion, wettability, interfacial interaction and re-agglomeration behaviour of CNTs and the corresponding mechanical and thermo-mechanical properties of CNT/epoxy composites. The amino-functionalized CNTs exhibit higher surface energy and much better wettability with epoxy resin than the pristine CNTs, and the attached amine molecules arising from the functionalization effectively inhibit the re-agglomeration of CNTs during the curing of resin. These ameliorating effects along with improved interfacial adhesion between the matrix and functionalized CNTs through covalent bonds result in improved flexural and thermo-mechanical properties compared with those without functionalization.  相似文献   

16.
Graphene‐nanoplateles (Gr) and multiwalled carbon nanotubes (CNTs) reinforced epoxy based composites were fabricated using ultrasonication, a strong tool for effective dispersion of Gr/CNTs in epoxy. The effect of individual addition of two different nanofillers (Gr and CNT) in epoxy matrix, for a range of nanofiller content (0.1–1 wt %), has been investigated in this study. This study compares mechanical and thermomechanical behavior of Gr and CNT reinforced epoxy. Gr reinforcement offers higher improvement in strength, Young's modulus, and hardness than CNT, at ≤0.2 wt %. However, mode‐I fracture toughness shows different trend. The maximum improvement in fracture toughness observed for epoxy‐Gr composite was 102% (with 0.3 wt % loading of Gr) and the same for epoxy‐CNT composite was 152% (with 0.5 wt % loading of CNT). Thorough microstructural studies are performed to evaluate dispersion, strengthening, and toughening mechanisms, active with different nanofillers. The results obtained from all the studies are thoroughly analyzed to comprehend the effect of nanofillers, individually, on the performance of the composites in structural applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46101.  相似文献   

17.
Carbon nanotube (CNT)/aramid fiber epoxy composites were produced using a new manufacturing method proposed in this study. The rheological and morphological experiments of the CNT/PEO nanocomposites indicates that the PEO nanocomposites have a good dispersion state of the CNTs. The flexural mechanical properties of the aramid fiber/CNT epoxy composites were measured. The CNTs dispersed in the epoxy resin between the aramid fibers were observed using field emission scanning electron miscroscope (FESEM). It was found that the flexural properties of the multiscale fiber‐reinforced composites were higher than those of aramid fiber/epoxy composites. POLYM. COMPOS., 28:458–461, 2007. © 2007 Society of Plastics Engineers.  相似文献   

18.
Novel carboxylic poly(arylene ether nitrile)s (CPEN) functionalized carbon nanotubes (CPEN‐f‐CNTs) were successfully prepared by a simple and effective solvent–thermal route. The CPEN‐f‐CNTs were subsequently used as the novel filler for preparation of high performance poly(arylene ether nitrile)s (PEN) nanocomposites. The SEM characterization of the PEN nanocomposites revealed that the CPEN‐f‐CNTs present better dispersion and interfacial compatibility in the PEN matrix, which was confirmed by the linear rheological analysis (Cole–Cole plots) as well. Consequently, the improved thermal stability (increased initial and maximum decomposition temperature) and enhanced mechanical properties (tensile strength and modulus) were obtained from nanocomposites using CPEN‐f‐CNTs. More importantly, the PEN/CPEN‐f‐CNTs nanocomposites not only show a high dielectric constant but also have low dielectric loss. For example, a dielectric constant of 39.7 and a dielectric loss of 0.076 were observed in the PEN composite with 5 wt% CPEN‐f‐CNTs loading at 100 Hz. Therefore, the flexible PEN/CPEN‐f‐CNTs nanocomposites with outstanding mechanical, thermal and dielectric properties will find wide application in the high energy density capacitors. POLYM. COMPOS., 37:2622–2631, 2016. © 2015 Society of Plastics Engineers  相似文献   

19.
In this work, electrical conductivity and thermo‐mechanical properties have been measured for carbon nanotube reinforced epoxy matrix composites. These nanocomposites consisted of two types of nanofillers, single walled carbon nanotubes (SW‐CNT) and electrical grade carbon nanotubes (XD‐CNT). The influence of the type of nanotubes and their corresponding loading weight fraction on the microstructure and the resulting electrical and mechanical properties of the nanocomposites have been investigated. The electrical conductivity of the nanocomposites showed a significantly high, about seven orders of magnitude, improvement at very low loading weight fractions of nanotubes in both types of nanocomposites. The percolation threshold in nanocomposites with SW‐CNT fillers was found to be around 0.015 wt % and that with XD‐CNT fillers around 0.0225 wt %. Transmission optical microscopy of the nanocomposites revealed some differences in the microstructure of the two types of nanocomposites which can be related to the variation in the percolation thresholds of these nanocomposites. The mechanical properties (storage modulus and loss modulus) and the glass transition temperature have not been compromised with the addition of fillers compared with significant enhancement of electrical properties. The main significance of these results is that XD‐CNTs can be used as a cost effective nanofiller for electrical applications of epoxy based nanocomposites at a fraction of SW‐CNT cost. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Structure and properties of polymer compositions based on carbon nanotubes (CNTs) filled epoxy matrix containing fluorosilicone copolymers as additives is discussed. Electrical conductivity and dielectric (microwave) permittivity of the composites can be varied by approximately one order of magnitude without changing the CNT concentration, by careful selection of the additive type and concentration. The mutual solubility of the modifiers and epoxy is a key factor determining both rheological properties of the uncured compositions and electrical properties of cured CNT‐nanocomposites. CNT‐nanocomposites modified with amino‐functional (i.e., epoxy crosslinkable) copolymers demonstrate improved electrical conductivity values at increased additive concentration, connected with the formation of specific segregated microstructure. Fluorosilicone additives added in a specific amount also allow for a decrease of the viscosity of uncured epoxy CNT‐nanocomposites, improving their processability. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46539.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号