首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A portable fiber-optic biosensor was used to detect Escherichia coli O157:H7 in seeded ground beef samples. The principle of the system is a sandwich immunoassay using cyanine 5 dye-labeled polyclonal anti-E. coli O157:H7 antibodies for generation of a specific fluorescent signal. Signal acquisition is effected by launching light from a 635-nm diode laser into a dual tapered 600-microm silica fiber. Fluorescent molecules within approximately 100 nm of the fiber surface are excited by the evanescent field, and a portion of the emission recouples into the fiber. A photodiode allows for quantitation of the collected emission light at wavelengths of 670 to 710 nm. Biotin-avidin interactions are used to attach polyclonal antibodies specific for E. coli O157:H7 to the final 7.5 cm of the fiber probe. The biosensor was able to detect E. coli O157:H7 to 3 to 30 CFU/ml in seeded ground beef samples. The reaction was highly specific. Signals with Listeria monocytogenes, Salmonella Typhimurium, or E. coli nonO157:H7 were 2 to 3% of those observed with a similar concentration of E. coli O157:H7. Assays were conducted at or near real-time with results obtained within 20 min of sampling.  相似文献   

2.
A biosensor was evaluated with regard to its usefulness in the rapid detection of Escherichia coli O157:H7 inoculated in ground beef, chicken carcass, and romaine lettuce samples. The biosensor consisted of a chemiluminescence reaction cell, a fiber-optic light guide, and a luminometer linked to a personal computer in conjunction with immunomagnetic separation. The samples inoculated with E. coli O157:H7 were first centrifuged and suspended in buffered peptone water and then incubated with anti-E. coli O157 antibody-coated magnetic beads and horseradish peroxidase (HRP)-labeled anti-E. coli O157 antibodies to form antibody-coated bead-bacterium-HRP-labeled antibody sandwich complexes. Finally, the sandwich complexes were separated from the samples in a magnetic field and reacted with luminol in the reaction cell. The number of E. coli O157:H7 cells was determined by collecting the HRP-catalyzed chemiluminescence signal from the bead surface through a fiber-optic light guide and measuring the signal with a luminometer. The chemiluminescence biosensor was specific for E. coli O157:H7 in samples containing other bacteria, including Salmonella Typhimurium, Campylobacter jejuni, and Listeria monocytogenes. The chemiluminescence signal was linear on a log scale from 10(2) to 10(5) CFU of E. coli O157:H7 per ml in samples. Detection could be completed within 1.5 h without any enrichment. The detection limits for ground beef, chicken carcass, and lettuce samples were 3.2 x 10(2), 4.4 x 10(2), and 5.5 x 10(2) CFU of E. coli O157:H7 per ml, respectively.  相似文献   

3.
The immunomagnetic separation with magnetic nanoparticle-antibody conjugates (MNCs) was investigated and evaluated for the detection of Escherichia coli O157:H7 in ground beef samples. MNCs were prepared by immobilizing biotin-labeled polyclonal goat anti-E. coli antibodies onto streptavidin-coated magnetic nanoparticles. For bacterial separation, MNCs were mixed with inoculated ground beef samples, then nanoparticle-antibody-E. coli O157:H7 complexes were separated from food matrix with a magnet, washed, and surface plated for microbial enumeration. The capture efficiency was determined by plating cells bound to nanoparticles and unbound cells in the supernatant onto sorbitol MacConkey agar. Key parameters, including the amount of nanoparticles and immunoreaction time, were optimized with different concentrations of E. coli O157:H7 in phosphate-buffered saline. MNCs presented a minimum capture efficiency of 94% for E. coli O157:H7 ranging from 1.6 x 10(1) to 7.2 x 10(7) CFU/ml with an immunoreaction time of 15 min without any enrichment. Capture of E. coli O157:H7 by MNCs did not interfere with other bacteria, including Salmonella enteritidis, Citrobacter freundii, and Listeria monocytogenes. The capture efficiency values of MNCs increased from 69 to 94.5% as E. coli O157:H7 decreased from 3.4 x 10(7) to 8.0 x 10(0) CFU/ml in the ground beef samples prepared with minimal steps (without filtration and centrifugation). An enrichment of 6 h was done for 8.0 x 10(0) and 8.0 x 10(1) CFU/ml of E. coli O157:H7 in ground beef to increase the number of cells in the sample to a detectable level. The results also indicated that capture efficiencies of MNCs for E. coli O157:H7 with and without mechanical mixing during immunoreaction were not significantly different (P > 0.05). Compared with microbeads based immunomagnetic separation, the magnetic nanoparticles showed their advantages in terms of higher capture efficiency, no need for mechanical mixing, and minimal sample preparation.  相似文献   

4.
利用光纤倏逝波生物传感器检测食品中 大肠杆菌O157:H7   总被引:2,自引:2,他引:0  
目的 建立一种应用光纤倏逝波生物传感器快速检测食品中大肠杆菌O157:H7的方法。方法 对光纤用大肠杆菌O157:H7抗体包被制备检测探针,用纳米量子点对抗体进行偶联制备检测抗体,并确定其检测的灵敏度和特异性,同时通过对人工污染样品的检测确认该方法检测实际样本的可行性。结果 建立的光纤倏逝波生物传感器检测大肠杆菌O157:H7的灵敏度达到50 CFU/mL,并具有较强的特异性。结论 利用光纤倏逝波生物传感器检测食品中污染的大肠杆菌O157:H7方法快速、准确,具有较强应用价值。  相似文献   

5.
The purpose of this work was (i) to investigate the feasibility of a previously reported upstream processing method for PCR template preparation to facilitate the detection of Escherichia coli O157:H7 from ground beef and (ii) to assess the impact of cell growth (no growth in the matrix versus growth in the matrix) on molecular detection limits. Two food matrices (autoclaved and raw ground beef) were evaluated in all studies. For no-growth experiments, 10-g meat samples were inoculated with 10(2) to 10(7) CFU/g E. coli O157:H7 and then homogenized. The homogenates were processed to remove large particulates and inhibitors using a two-phase upstream processing method consisting of two sequential centrifugation steps, the second of which used titanous hydroxide to facilitate bacterial immobilization. After upstream processing, sample concentrates were extracted for DNA isolation and amplified by PCR. For growth experiments, 10-g meat samples were inoculated at 1 CFU of E. coli O157:H7 per gram, allowed to grow to 10(2) to 10(7) CFU/g, and then processed for PCR assay. Cell recoveries after upstream processing ranged from 15.9 to 77.6% and were not facilitated by the use of titanous hydroxide, as compared with a saline control (P > 0.05). Bacterial cell recovery and PCR detection limits were similar when comparing autoclaved ground beef and raw ground beef, but cell recoveries were highly variable for raw ground beef samples in which E. coli O157:H7 cells were allowed to grow before processing for detection. Overall, PCR detection limits approximated 10(3) CFU/g of ground beef for all treatments. These results indicate that use of model food systems may not always provide an accurate replication of real-world conditions when evaluating PCR detection limits.  相似文献   

6.
This research aims to demonstrate the feasibility of a modified gold biosensor to detect E. coli O157:H7 in leafy turnip greens. The gold biosensor was modified with dithiobis-succinimidyl propionate (DSP) and/or protein A or G. The gold biosensor modified with DSP (Gold-DSP) was combined with a light microscopic imaging system (LMIS). The optimal concentration and specificity of anti-E. coli O15 polyclonal antibodies (pAbs) on the biosensor were determined. The reliability of Gold-DSP biosensor was investigated by determining the sensitivity, specificity, and limit of detection (LOD) of the Gold-DSP combined with LMIS. The Gold-DSP combined with LMIS was applied to turnip greens for E. coli O157:H7 detection. The modification of Gold biosensor with DSP significantly increased the detected number of E. coli O157:H7. The specificity of pAbs was sufficient to react with target E. coli O157:H7 among the tested bacterial culture. The optimum concentration of pAbs was determined as 200 μg/mL. The sensitivity, specificity, and LOD of Gold-DSP combined with LMIS were determined as 100%, 90%, and 10(3) CFU/25 mm(2) , respectively. When applied to turnip greens, the Gold-DSP combined with LMIS could detect 2641 ± 394 and 15383 ± 3853 cell/mm(2) with the initial concentrations of 10(1) and 10(2) CFU/25 g turnip greens, respectively, after 10 h-enrichment. Overall, this research suggested that the Gold-DSP combined with LMIS could be used to detect E. coli O157:H7 on turnip greens qualitatively and quantitatively.  相似文献   

7.
Enterohemorrhagic Escherichia coli O157:H7 is an important pathogen associated with infections caused by consumption of undercooked raw meat. Sensitive and rapid detection methods for E. coli O157:H7 are essential for the meat industry to ensure a safe meat supply. This study was conducted to compare the sensitivity of the VIDAS ultra performance E. coli test (ECPT UP) with a noncommercial real-time (RT) PCR method and the U.S. Department of Agriculture, Food Safety and Inspection Service (USDA-FSIS) reference method for detecting E. coli O157:H7 in raw ground beef. Optimal enrichment times and the efficacy of testing different types of raw meat, either as individual samples (25 g) or as composites (375 g), were examined. For 25-g samples of each type of raw ground beef tested, 6 h of enrichment was sufficient for both the VIDAS ECPT UP and RT-PCR methods, but for 375-g samples, 24 h of enrichment was required. Both the VIDAS ECPT UP and RT-PCR methods produced results similar to those obtained with the USDA-FSIS reference method after 18 to 24 h of enrichment. The primer specificity of the RT-PCR assay and the highly specific phage ligand used in the VIDAS ECPT UP for target recognition enabled the detection of low levels of E. coli O157:H7 in 25 g of various types of raw ground beef. The tests also allowed the detection of E. coli O157:H7 in composite raw ground beef and trimmings in samples of up to 375 g.  相似文献   

8.
Currently, several beef processors employ test-and-hold systems for increased quality control of ground beef. In such programs, each lot of product must be tested and found negative for Escherichia coli O157:H7 prior to release of the product into commerce. Optimization of three testing attributes (detection time, specificity, and sensitivity) is critical to the success of such strategies. Because ground beef is a highly perishable product, the testing methodology used must be as rapid as possible. The test also must have a low false-positive result rate so product is not needlessly discarded. False-negative results cannot be tolerated because they would allow contaminated product to be released and potentially cause disease. In this study, two culture-based and three PCR-based methods for detecting E. coli O157:H7 in ground beef were compared for their abilities to meet the above criteria. Ground beef samples were individually spiked with five genetically distinct strains of E. coli O157: H7 at concentrations of 17 and 1.7 CFU/65 g and then subjected to the various testing methodologies. There was no difference (P > 0.05) in the abilities of the PCR-based methods to detect E. coli O157:H7 inoculated in ground beef at 1.7 CFU/65 g. The culture-based systems detected more positive samples than did the PCR-based systems, but the detection times (21 to 48 h) were at least 9 h longer than those for the PCR-based methods (7.5 to 12 h). Ground beef samples were also spiked with potentially cross-reactive strains. The PCR-based systems that employed an immunomagnetic separation step prior to detection produced fewer false-positive results.  相似文献   

9.
Two naturally occurring antimicrobial agents were tested in packages of refrigerated ground beef for their ability to reduce the viability of Escherichia coli O157:H7 during storage. Allyl isothiocyanate (AITC) and Lactobacillus reuteri were tested separately and together for their action against a cocktail of five strains of E. coli O157:H7 in ground beef held at 4 degrees C for 25 days. Ground beef prepared from whole, raw inside round beef roasts was inoculated with low (3 log CFU/g) or high (6 log CFU/g) levels of the E. coli O157:H7 mixture. The beef was treated with AITC (about 1,300 ppm), L. reuteri, or both, along with 250 mM of glycerol per kg of meat at two levels (3 and 6 log CFU/g) and according to a design that yielded 8 controls plus 10 different treatments. Samples were analyzed for E. coli O157:H7 survivors, numbers of total bacteria, and lactic acid bacteria on days 0 to 25 at 5-day intervals. L. reuteri at both input levels with glycerol killed E. coli O157:H7 at both inoculated levels before day 20. AITC completely eliminated E. coli O157:H7 at the low-inoculum level (3 log CFU/g) and reduced viability >4.5 log CFU/g at the high-inoculum level (6 log CFU/g) by the end of the storage period. The combination of L. reuteri and AITC did not yield an additive effect against E. coli O157:H7 viability. L. reuteri in the presence of glycerol was highly effective against E. coli O157:H7 in ground beef during refrigerated storage (4 degrees C) in modified atmosphere packages. Sensory testing is planned to evaluate effects of treatments.  相似文献   

10.
The resistance of Escherichia coli O157:H7 and Staphylococcus aureus in ground beef to gamma radiation was significantly (P < 0.05) higher at subfreezing temperatures than above freezing. Ground beef was inoculated (ca. 2 x 10(8) CFU/g) with five isolates of either E. coli O157:H7 or S. aureus and subdivided into 25-g samples, vacuum packaged in barrier pouches, and tempered to 20, 12, 4, 0, -4, -12, -20, -30, -40, or -76 degrees C before gamma irradiation. The studies were repeated twice. The D10-values for both of these pathogens increased significantly at subfreezing temperatures, reaching maxima at approximately -20 degrees C. The D10-values for E. coli O157:H7 at 4 and -20 degrees C were 0.39 +/- 0.04 and 0.98 +/- 0.23 kGy, respectively. The D10-values for S. aureus at 0 and -20 degrees C were 0.51 degrees 0.02 and 0.88 +/- 0.05 kGy, respectively.  相似文献   

11.
Currently used industry testing programs require the ability to detect Escherichia coli O157:H7 in samples of beef trim or ground beef at levels as low as 1 CFU/375 g. We present a reliable protocol for generating a control inoculum for verification testing at this low concentration and evaluate its use. Results show that half of all samples received no cells when 1 CFU was the target concentration and that targets greater than 3 CFU were much more reliable. Detection by culture isolation and two commercial assays, Qualicon BAX-MP and BioControl GDS, detected 94% ± 11%, 92% ± 10%, and 92% ± 7% of samples inoculated with 5.4 CFU (range 1 to 9 CFU), respectively. We also examined the effect of background aerobic plate count (APC) bacteria and fat content effects on the detection of E. coli O157:H7. At APC concentrations below 6 log CFU/g, the rapid methods detected all beef trim samples inoculated with 26 CFU of E. coli O157:H7 per 65 g. At an APC of 6.7 log CFU/g, culture, BAX-MP, and GDS detected 100, 75, and 13%, respectively, of inoculated samples. Neither commercial method detected E. coli O157:H7 in the samples when APC was 7.7 log CFU/g, whereas culture was able to detect 63% of E. coli O157:H7 in the samples when APC was at this concentration. Increased fat content correlated with decreasing recovery of immunomagnetic separation beads, but this was not observed to interfere with detection of E. coli O157:H7.  相似文献   

12.
The antibacterial activity of lactoferricin B on enterohemorrhagic Escherichia coli O157:H7 in 1% peptone medium and ground beef was studied at 4 and 10 degrees C. In 1% peptone medium, 50 and 100 microg of lactoferricin B per ml reduced E. coli O157:H7 populations by approximately 0.7 and 2.0 log CFU/ml, respectively. Studies comparing the antibacterial effect of lactoferricin B on E. coli O157:H7 in 1% peptone at pH 5.5 and 7.2 did not reveal any significant difference (P > 0.5) at the two pH values. Lactoferricin B (100 microg/g) reduced E. coli O157:H7 population in ground beef by about 0.8 log CFU/g (P < 0.05). No significant difference (P > 0.5) was observed in the total plate count between treatment and control ground beef samples stored at 4 and 10 degrees C. The antibacterial effect of lactoferricin B on E. coli O157:H7 observed in this study is not of sufficient magnitude to merit its use in ground beef for controlling the pathogen.  相似文献   

13.
A polymerase chain reaction (PCR)-based detection system, BAX, was evaluated for its sensitivity in detecting Salmonella Enteritidis, Escherichia coli O157:H7, Listeria sp., and Listeria monocytogenes on fresh produce. Fifteen different types of produce (alfalfa sprouts, green peppers, parsley, white cabbage, radishes, onions, carrots, mushrooms, leaf lettuce, tomatoes, strawberries, cantaloupe, mango, apples, and oranges) were inoculated, in separate studies, with Salmonella Enteritidis, E. coli O157:H7, and L. monocytogenes down to the predicted level of 1 CFU per 25-g sample. Detection by BAX was compared to recovery of the inoculated bacteria by culture methods according to the Food and Drug Administration's (FDA) Bacteriological Analytical Manual (BAM). BAX was essentially as sensitive as the culture-based method in detecting Salmonella Enteritidis and L. monocytogenes and more sensitive than the culture-based method for the detection of E. coli O157:H7 on green pepper, carrot, radish, and sprout samples. Detection of the pathogenic bacteria in samples spiked with a predicted number of less than 10 CFU was possible for most produce samples, but both methods failed to detect L. monocytogenes on carrot samples and one of two mushroom and onion samples spiked with less than 100 CFU. Both BAX and the culture method were also unable to consistently recover low numbers of E. coli O157:H7 from alfalfa sprouts. The PCR method allowed detection of Salmonella Enteritidis, E. coli O157:H7, and L. monocytogenes at least 2 days earlier than the conventional culture methods.  相似文献   

14.
Ground beef products are susceptible to contamination with Escherichia coli O157:H7. The objective of this study was to examine the effect of salt, sodium pyrophosphate (SPP), and sodium lactate on the probability of growth of E. coli O157:H7 in ground beef under a temperature abuse condition. Ground beef containing 0 to 2.25% salt, 0 to 0.5% SPP, and 0 to 3% lactate was inoculated with a four-strain mixture of E. coli O157:H7, vacuum packaged, and stored at 10°C for 15 days. A total of 25 combinations of the three additives, each with 20 samples, were tested. A logistic regression was used to model the probability of growth of E. coli O157:H7 (with a 1.0-log CFU/g increase during storage) as a function of salt, SPP, and lactate. The resultant probability model indicated that lactate at higher concentrations decreased the probability of growth of E. coli O157:H7 in ground beef, and the effect was more pronounced at higher salt concentrations. At salt concentrations below 1.3%, the increase of SPP concentration marginally increased the growth probabilities of E. coli O157:H7. The model illustrated the effect of salt, SPP, and lactate on the growth probabilities and growth or no-growth behavior of E. coli O157:H7 in ground beef and can be used to improve the microbial food safety of ground beef products.  相似文献   

15.
Pure-culture broth-based models of the growth of Escherichia coli O157:H7 have been used to estimate its behavior in ground beef, even though these models have not been adequately validated for this food product. This situation limits accurate estimates of the behavior of E. coli O157:H7 in ground beef and introduces uncertainties in risk assessments. In the present study, the growth of single and multiple strains of E. coli O157:H7 were measured in retail ground beef stored at 10 degrees C for up to 12 days, and the results were compared with estimates generated by the U.S. Department of Agriculture's Pathogen Modeling Program (PMP; version 5.1). At pH 5.9, the PMP predicted a maximum population density (MPD) of 9.13 log10 CFU/g, an exponential growth rate (EGR) of 0.052 log10 CFU/h, and a lag time of 56.3 h. Similar parameter values were observed for sterilized ground beef; however, no lag phase was observed. In contrast, the mean MPD and EGR for retail ground beef were 5.09 log10 CFU/g and 0.019 log10 CFU/h, respectively, and no lag phase was observed. Both the EGR and the MPD increased with decreasing fat levels. There was low variation in the MPD and EGR parameters for the nine E. coli O157:H7 ground beef isolates. Two isolates of competitive native flora were separately added to sterilized ground beef, and the EGR and MPD decreased as the ratio of competitive flora to E. coli O157:H7 increased. For one strain, at ratios of 1:1, 10:1, and 100:1, the EGRs were 0.033, 0.025, and 0.018 log10 CFU/h, respectively, and the MPDs were 6.14, 5.08, and 4.84 log10 CFU/g, respectively. These results demonstrate that existing broth-based models for E coli O157:H7 must be validated for food and that models should consider the effects of the food matrix, the competitive microflora, and potential pathogen strain variation.  相似文献   

16.
The objective of this study was to establish a multiplex real-time PCR for the simultaneous quantitation of Escherichia coli O157:H7, Salmonella, and Shigella. Genomic DNA for the real-time PCR was extracted by the boiling method. Three sets of primers and corresponding TaqMan probes were designed to target these three pathogenic bacteria. Multiplex real-time PCR was performed with TaqMan Universal PCR Master Mix in an ABI Prism 7700 Sequence Detection System. Final standard curves were calculated for each pathogen by plotting the threshold cycle value against the bacterial number (log CFU per milliliter) via linear regression. With optimized conditions, the quantitative detection range of the real-time multiplex PCR for pure cultures was 10(2) to 10(9) CFU/ml for E. coli O157:H7, 10(3) to 10(9) CFU/ml for Salmonella, and 10(1) to 10(8) CFU/ml for Shigella. When the established multiplex real-time PCR system was applied to artificially contaminated ground beef, the detection limit was 10(5) CFU/g for E. coli O157:H7, 10(3) CFU/g for Salmonella, and 10(4) CFU/g for Shigella. Immunomagnetic separation (IMS) was further used to separate E. coli O157:H7 and Salmonella from the beef samples. With the additional use of IMS, the detection limit was 10(3) CFU/g for both pathogens. Results from this study showed that TaqMan real-time PCR, combined with IMS, is potentially an effective method for the rapid and reliable quantitation of E. coli 0157:H7, Salmonella, and Shigella in food.  相似文献   

17.
Sandwich enzyme-linked immunosorbent assay, especially when coupled with biosensor technology, is a simple methodology that can rapidly screen juices for Escherichia coli O157:H7 contamination. However, sampling directly from apple juice and ciders has been postulated to reduce immunoassay sensitivity. In fluorescence sandwich enzyme-linked immunosorbent assays using commercially available polyclonal or monoclonal antibodies, sampling pasteurized apple juice spiked with E. coli O157:H7 compared to spiked phosphate-buffered saline shifted the range of detection. The spiked apple juice range of detection was 10(4) to 10(6) CFU/ml, whereas that for spiked phosphate-buffered saline was 10(6) to 10(8) CFU/ml, representing a hundredfold difference in sensitivity. Apple juice also increased background fluorescence intensity (P < 0.001) while reducing the net fluorescence intensity per CFU (P < 0.001). The addition of the polymer polyvinylpyrrolidone to apple juice significantly improved assay performance by increasing sensitivity and net fluorescence intensity per CFU and by reducing background fluorescence. Adjusting pH of apple juice from 3.9 to 7.4 improved assay performance but not to the degree seen with phosphate-buffered saline or polyvinylpyrrolidone-treated apple juice samples. The apple juice polyphenol, epicatechin, reduced net fluorescence intensity in a concentration-dependent manner, a change that was reversed by polyvinylpyrrolidone. Taken all together, these results suggest that polyvinylpyrrolidone can improve detection of O157:H7 in juices by reducing the effect of polyphenols on fluorescence sandwich enzyme-linked immunosorbent assay performance.  相似文献   

18.
A comparison was made of the relative efficiencies of three enrichment media, RapidChek Escherichia coli O157:H7 enrichment broth (REB), R&F broth (RFB), and modified E. coli broth containing novobiocin (mEC+n), and four selective plating media for detection of cold- and freeze-stressed E. coli O157:H7 in raw ground beef. Ground beef (25 g) was inoculated with E. coli O157:H7 at < or =0.5 and < or =2 CFU/g, and samples were then enriched immediately or were stored at 4 degrees C for 72 h or at -20 degrees C for 2 weeks and then enriched. After 8 or 20 h of enrichment, the cultures were plated onto R&F E. coli O157: H7 chromogenic plating medium, cefixime-tellurite sorbitol MacConkey agar, CHROMagar O157, and Rainbow agar O157 and tested using the RapidChek E. coli O157 lateral flow immunoassay and a multiplex PCR assay targeting the E. coli O157: H7 eae, stx1, and stx2 genes. Recovery of E. coli O157:H7 on the four agar media was 4.0 to 7.9 log CFU/ml with the REB enrichment, 1.4 to 7.4 log CFU/ml with RFB, 1.7 to 6.7 log CFU/ml with mEC+n incubated at 42 degrees C, and 1.3 to 3.3 log CFU/ml from mEC+n incubated at 35 degrees C. The percentages of positive ground beef samples containing nonstressed, cold-stressed, and freeze-stressed E. coli O157:H7 as obtained by plating, the immunoassay, and the PCR assay were 97, 88, and 97%, respectively, with REB, 92, 81, and 78%, respectively, with RFB, 97, 58, and 53%, respectively, with mEC+n incubated at 42 degrees C, and 22, 31, and 25%, respectively, with mEC+n incubated at 35 degrees C. Logistic regression analyses of the data indicated significant main effects of treatment, type of medium, enrichment time, inoculum concentration, and detection method. In particular, a positive result was 1.1 times more likely to occur after 20 h of enrichment than after 8 h, 25 times more likely with RFB and REB than with mEC+n at 35 degrees C, 3.7 times more likely with an initial inoculum of < or = 2.0 CFU/g than with < or = 0.5 CFU/g, 2.5 to 3 times more likely using freeze-stressed or nonstressed bacteria than with cold-stressed bacteria, and 2.5 times more likely by plating than by the immunoassay or the PCR assay. REB had better overall performance for enrichment of cold- and freeze-stressed E. coli O157:H7 present in ground beef than did the other media examined.  相似文献   

19.
The objective of this study was to evaluate the thermal inactivation of Escherichia coli O157:H7 in ground beef cooked to an internal temperature of 71.1 degrees C (160 degrees F) under conditions simulating consumer-style cooking methods. To compare a double-sided grill (DSG) with a single-sided grill (SSG), two different cooking methods were used for the SSG: for the one-turnover (OT-SSG) method, a patty was turned once when the internal temperature reached 40 degrees C, and for the multiturnover (MT-SSG) method, a patty was turned every 30 s. Patties (100 g, n = 9) inoculated with a five-strain mixture of E. coli O157: H7 at a concentration of 10(7) CFU/g were cooked until all three temperature readings (for two sides and the center) for a patty were 71.1 degrees C. The surviving E. coli O157:H7 cells were enumerated on sorbitol MacConkey (SMAC) agar and on phenol red agar base with 1% sorbitol (SPRAB). The order of the cooking methods with regard to the cooking time required for the patty to reach 71.1 degrees C was as follows: DSG (2.7 min) < MT-SSG (6.6 min) < OT-SSG (10.9 min). The more rapid, higher-temperature cooking method was more effective (P < 0.01) in destroying E. coli O157:H7 in ground beef. E. coli O157:H7 reduction levels were clearly differentiated among treatments as follows: OT-SSG (4.7 log10 CFU/g) < MT-SSG (5.6 log10 CFU/g) < DSG (6.9 log10 CFU/g). Significantly larger numbers of E. coil O157:H7 were observed on SPRAB than on SMAC agar. To confirm the safety of ground beef cooked to 71.1 degrees C, additional patties (100 g, n = 9) inoculated with lower concentrations of E. coli O157:H7 (10(3) to 10(4) CFU/g) were tested. The ground beef cooked by the OT-SSG method resulted in two (22%) of nine samples testing positive after enrichment, whereas no E. coli O157:H7 was found for samples cooked by the MT-SSG and DSG methods. Our findings suggest that consumers should be advised to either cook ground beef patties in a grill that cooks the top and the bottom of the patty at the same time or turn patties frequently (every 30 s) when cooking on a grill that cooks on only one side.  相似文献   

20.
Escherichia coli O157:H7 was sought systematically in 1,400 samples of retail ground beef in Seattle in a 1-year prospective study. Sorbitol-nonfermenting, lactose-fermenting, indole-positive colonies isolated after enrichment culture were probed for the presence of Shiga toxin genes. Totals of 67,040 sorbitol-nonfermenting and 66,705 sorbitol-fermenting colonies were characterized, but E. coli O157:H7 was not identified. The sensitivity of this technique was usually sufficient to detect E. coli O157:H7 at a concentration below 1 CFU/g of meat. These data demonstrate that retail ground beef in Seattle is neither frequently nor heavily contaminated with E. coli O157:H7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号