首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
借助差示扫描量热法、扫描电镜等检测分析手段以及JMatPro热力学软件,研究了等温球化退火的奥氏体化温度和保温时间对GCr15SiMo轴承钢碳化物的影响。结果表明,随着奥氏体化温度的升高和保温时间的延长,GCr15SiMo轴承钢中碳化物趋于均匀化、细小化,且有利于GCr15SiMo轴承钢退火过程碳化物球化效果。在奥氏体化温度为800℃、保温时间为30 min的等温球化退火工艺下,GCr15SiMo轴承钢中碳化物数量多、尺寸小、弥散分布度高,且组织最为均匀致密,硬度较低,球化效果最好。  相似文献   

2.
用管式炉对GCr15钢球化退火工艺进行模拟,研究了奥氏体化温度对碳化物球化效果的影响。利用XRD和TEM分析了碳化物的种类,采用电子探针观察了显微组织,并利用Image-Pro Plus和Photoshop软件对碳化物的平均直径,单位面积内的碳化物数目以及碳化物的平均粒间距进行了统计。结果表明,球化状态GCr15钢中的碳化物均为M3C。奥氏体化温度在760~880℃内变化时,随着奥氏体化温度的升高,碳化物的平均直径在0.35~0.45μm内先略微减小后逐渐增加,单位面积内的碳化物数目逐渐减少,碳化物的平均粒间距逐渐增加,试样的硬度逐渐减小。拟合发现,维氏硬度和单位体积内铁素体-碳化物的界面面积呈正比,拟合方程为HV=17.4S+190。为得到良好的球化组织,奥氏体化温度应控制在800℃左右。  相似文献   

3.
通过球化退火实验,采用定量金相分析和显微硬度测定,研究了球化退火过程中微合金Nb对轴承钢GCr15碳化物析出和球化的影响。结果表明:实验钢800℃加热1 h后以15℃/h冷却球化退火过程中,添加0.018%和0.040%Nb虽然没有影响GCr15钢的碳化物析出和球化的温度,均为720~740℃,但是显著加快了GCr15钢碳化物析出和球化的速率。  相似文献   

4.
为了实现GCr15钢球化过程的计算机控制,根据相变和扩散理论,建立了GCr15钢离异共析转变临界过冷度的计算模型,讨论了影响离异共析转变临界过冷度的因素.并采用定量金相方法,通过奥氏体中断淬火和等温球化实验对模型进行验证.结果表明:GCr15钢奥氏体化后剩余碳化物体积分数越大,碳化物颗粒尺寸越小,离异共析转变的临界相变温度就越低.模型的计算结果与实验吻合,该模型可以为GCr15钢球化退火工艺的设计和优化提供理论依据.  相似文献   

5.
研究了传统退火和固溶+高温回火球化预热处理对GCr15轴承钢碳化物及最终淬火+低温回火态轴承钢屈服强度、硬度的影响。结果表明:在本试验条件下,传统退火工艺处理的GCr15钢试样碳化物更为圆整,固溶+回火工艺处理的GCr15钢试样碳化物更为细小,随着回火温度和回火时间的增加,固溶+回火处理的GCr15钢试样组织中碳化物的尺寸逐渐增大,越来越均匀。经最终840℃×30 min油淬+180℃×2 h回火处理后,预处理工艺固溶+720℃×2 h回火的试样硬度为64.2 HRC,屈服强度为1843 MPa,与传统球化退火处理试样相比,分别提高了4.6%和11.8%。  相似文献   

6.
对比研究了GCr15轴承钢在传统热场条件下和可控脉冲电磁能条件下,两相区球化退火保温阶段碳化物的演变过程,并采用扫描电镜观察了不同热处理条件下残留碳化物的形貌。结果表明,脉冲电磁能有助于缩短两相区球化退火的保温时间,残留碳化物分布密度由传统热场球化退火60 min后的2.6460 μm-2降低至电磁能球化退火60 min后的0.7839 μm-2。动力学分析认为,外加磁场降低了Gtot,提高了奥氏体的长大速度,促进了碳化物的溶解,缩短了球化退火时间。  相似文献   

7.
对GCr15钢采用低温奥氏体化和快速球化退火新工艺,它是利用不均匀的奥氏体中未溶解碳化物或奥氏体中高浓度碳偏聚区的非自发形核的有利作用来加速球化,即利用"离异共析"原理,运用此工艺使60SH高强度链销轴球化退火的等温转变时间减少60%,在节能方面达到40%以上。  相似文献   

8.
对GCr15轴承钢进行了不同温度和不同时间的球化退火,测定了所获得的组织和硬度,以探索能取代传统球化退火工艺的新工艺。结果表明,GCr15钢经760℃保温2 h后炉冷至500℃空冷,其球状珠光体为2~4级,硬度为188 HB,符合有关标准的要求,且缩短了工艺周期,提高了生产效率。  相似文献   

9.
对GCr15高碳铬轴承钢进行了不同工艺的热变形在线球化退火,采用SEM对在线球化退火后GCr15钢中碳化物的数量、尺寸、形貌进行了分析,并利用显微维氏硬度计进行了硬度测定,得出本试验在线球化退火工艺的最佳终变形温度T和冷却速率v。结果表明,当T=720℃、v=0.05℃/s时,碳化物的平均尺寸大、数量多、圆度好,且均匀分布在铁素体上,为最优工艺参数,而T=650℃、v=0.2℃/s时的球化效果最差。随着T的升高,球化比例不断提高;T相同时,v越低,球化时间越长,所得到的球状碳化物颗粒尺寸越大,球化效果越好。  相似文献   

10.
热处理工艺对GCr15钢碳化物球化效果的影响   总被引:1,自引:0,他引:1  
方琴  张崇才  陈庚  曾波 《热加工工艺》2012,41(12):159-162
分别采用常规球化退火、循环球化退火和1050℃高温固溶+700℃高温回火三种不同的预热处理工艺处理后,再用840℃淬火+150℃回火工艺处理了GCr15钢试样,研究了经上述三种工艺处理后GCr15钢试样的金相组织和硬度,分析了实验结果和球化机理。结果表明:GCr15钢试样经1050℃高温固溶+700℃高温回火+840℃淬火+150℃回火的热处理工艺,具有工艺过程简便、可操作性较强、生产周期较短、能耗较低和强韧性较好的特点,其热处理后的金相组织为回火马氏体+细小、圆整、比较均匀弥散分布的碳化物。  相似文献   

11.
改进型4Cr5Mo2MnV1Si压铸模块钢采用传统“余热退火+正火+等温球化退火”工艺球化处理后,组织未达到技术要求,对其传统球化处理工艺做了改进,并对改进工艺处理试样的组织、硬度进行检测。结果表明,试验钢余热退火+正火+等温球化退火后,再经1010℃保温0.5 h炉冷至不同温度(820、790和760℃)保温1 h空冷处理后,显微组织均呈板条马氏体形态,基体上均匀弥散分布有碳化物颗粒,但硬度均高于400 HBW,未达到硬度小于240 HBW球化组织的要求。而经1010℃保温0.5 h空冷至室温,再820、790和760℃保温1 h回火空冷处理后,组织均为等轴铁素体上均匀分布着质点状碳化物,硬度分别为321、235和245 HBW,其中790℃回火效果最好,球化组织级别达到GB3,硬度小于240 HBW。因此,采用余热退火+正火+高温回火(790℃)代替余热退火+正火+等温球化退火可实现改进型4Cr5Mo2MnV1Si压铸模块钢的锻后球化处理。  相似文献   

12.
通过对60Si2Mn冷拔珠光体钢丝进行快速球化退火处理,即将其加热到810 ℃奥氏体化,保温1.5 min后随炉冷却至500 ℃出炉空冷,研究了其力学性能、球化效果、球化时间和快速球化的机理,并与普通球化退火及等温球化退火这两种常用球化退火工艺进行了对比。结果表明,与两种常用球化退火工艺相比,快速球化退火显著缩短了退火时间,且球化效果更好,其屈服强度、抗拉强度、伸长率、断面收缩率分别为620 MPa、745 MPa、21%和66.7%。球化时间的缩短主要是因为冷拔变形使钢中的位错密度和畸变能增加,促使片层状珠光体能够在加热过程中快速溶断,并促进渗碳体组织的球化。  相似文献   

13.
奥氏体化温度对Cr5合金钢组织和性能的影响   总被引:2,自引:1,他引:1  
研究了Cr5钢经(810~1050)℃×1 h油冷处理后的组织和性能。结果表明,随着奥氏体化温度的提高,Cr5钢中的游离碳化物减少,细针状马氏体粗化,晶粒逐步长大。在930~950℃奥氏体化,淬火基体组织为隐针马氏体及弥散粒状M7C3型碳化物,且晶粒较小、硬度较高。  相似文献   

14.
章军  赵四新 《金属热处理》2022,47(4):185-188
通过研究不同球化退火工艺对冷锻齿轮用16MnCrS5钢力学性能的影响,分析了4种球化退火工艺对16MnCrS5齿轮钢硬度、强度、伸长率的影响。试验结果表明,760 ℃保温4 h,以12 ℃/h的冷却速率冷却至710 ℃保温3 h,再以12 ℃/h的冷却速率冷却至680 ℃保温2 h,炉冷至500 ℃下出炉,在此工艺条件下,材料的硬度最低达到123 HBW,且伸长率达到39%,断面收缩率超过70%,可达到冷锻加工材料高塑性要求,可为16MnCrS5冷锻齿轮钢热处理工艺提供参考。  相似文献   

15.
为了优化高碳马氏体不锈钢8Cr13MoV的球化热处理工艺,提高其退火后的冷加工性能,采用微观组织分析法以及拉伸力学分析法研究了球化退火过程中奥氏体化保温时间和冷却速率对8Cr13MoV钢的球化效果影响。结果表明, 随着奥氏体保温时间的增加,组织中细颗粒状碳化物数量减少,索氏体数量增多,试样硬度先降低后升高,但断后伸长率持续增加;随冷却速率增加,试样组织中细颗粒状碳化物和索氏体数量、硬度和强度增加,断后伸长率降低。综合对比,奥氏体保温时间ϕ90 min时试样综合力学性能较好,冷却速率应控制在25 ℃·h-1以内。与奥氏体保温时间相比,冷却速率对力学性能的影响更加显著。  相似文献   

16.
采用淬火膨胀仪进行模拟试验,通过对18CrNiMo7-6钢的显微组织、硬度分布的表征,研究了经真空渗碳后18CrNiMo7-6钢在冷却过程中碳化物的析出规律。结果表明,在980 ℃保温30 min后,试验钢中的碳化物完全溶解;快速冷却至600 ℃保温20 min后,渗层组织充分转变为细片层珠光体形貌组织;再升温至830 ℃保温20 min并以20 ℃/s的冷速气冷至室温后,室温组织出现不同形态的碳化物,马氏体组织较热处理前的原始组织得到了细化,且硬度及淬硬层深度较热处理前显著提升。  相似文献   

17.
通过研究奥氏体化温度、冷却方式、回火温度对ASTM A668 CL.E钢强度、塑性及韧性的影响,确定最合理的热处理工艺为870℃奥氏体化后加速冷却+670℃回火。  相似文献   

18.
通过Gleeble 1500型热模拟试验机对含Nb高碳试验钢进行了不同奥氏体化温度和冷速下的热处理。采用光学显微镜、扫描电镜、硬度测量等试验手段对试验钢的显微组织、硬度和珠光体片层间距进行了观察和测量。结果表明:奥氏体化温度为950 ℃时,试验钢淬火后晶粒尺寸为34 μm,硬度为813 HV5,以0.1~5 ℃/s冷速冷却至室温的组织为珠光体+铁素体;而奥氏体化温度为1200 ℃时,淬火后晶粒尺寸为134 μm,硬度为827 HV5,以0.1~1 ℃/s冷速冷却至室温的组织为珠光体+铁素体,冷速为5 ℃/s时,组织为针状马氏体+少量的铁素体。在1220 ℃以上Nb全部固溶在奥氏体中,奥氏体化温度过高会导致晶粒过分长大。珠光体片层间距随着奥氏体化温度的升高和冷却速率的提升而变小,片层间距的减小可使硬度值提高。  相似文献   

19.
根据热模拟试验测得42CrMoVNb高强度螺栓钢的Ac1、Ac3分别为773 ℃、811 ℃,并由此设计试验钢的球化退火工艺,通过改变保温温度、保温时间对其球化退火工艺进行了研究。通过光学显微镜、扫描电镜、显微维氏硬度以及冷镦试验,对不同球化退火工艺过程中碳化物的球化演变和硬度变化进行了分析。结果表明:试验钢经Ac1以上780 ℃短暂保温0.5 h,缓冷至710 ℃保温6 h球化退火及Ac1以下750 ℃保温3 h,缓冷至710 ℃保温6 h球化退火后,均能得到良好的球化组织与较低的硬度,碳化物形态均趋于球状且分布均匀,具有良好的塑性和冷镦性能。Ac1以下750 ℃球化时,保温时间越长碳化物球化越明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号