首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在Gleeble-1500D热模拟试验机上对Cu-Cr-Zr-Nd合金进行热压缩实验,对合金在应变速率分别为0.001、0.01、0.1、1、10 s-1,变形温度分别为650、750、850、900、950℃的高温变形过程中的流变应力行为、热变形过程中的组织演变和动态再结晶机制进行研究。结果表明:流变应力随变形温度的升高而减小,随应变速率的提高而增大。Cu-Cr-Zr-Nd合金在热变形过程中的动态再结晶机制受变形温度和应变速率的影响。当温度为900℃、应变速率为10 s-1时,Cu-Cr-Zr-Nd合金发生完全的动态再结晶。从流变应力、应变速率和温度的相关性,得出该合金高温热压缩变形时的热变形激活能Q为404.84 k J/mol,同时利用逐步回归的方法建立该合金的流变应力方程。  相似文献   

2.
在Gleeble-1500D热模拟试验机上对Cu-Cr-Zr-Ag合金进行高温等温压缩试验,当热压缩应变速率为0.001~10 s-1、热变形温度为650~950℃时,同时对合金高温热压缩的热加工图以及变形机制进行研究。结果表明:流变应力随变形温度的升高而减小,随应变速率的提高而增大;热变形过程中的稳态流变应力可用双曲正弦本构关系式来描述,其激活能为Q=343.23 k J/mol,同时利用逐步回归的方法建立了该合金的流变应力方程。根据动态材料模型计算并分析了合金的热加工图,并且获得了试验参数范围内热变形过程的最佳工艺参数:温度为750~800℃、应变速率范围为0.01~0.1 s-1,并利用热加工图分析了该合金不同区域的高温变性特征以及组织变化。  相似文献   

3.
在Gleeble-1500D热模拟试验机上对Cu-Cr-Zr合金在应变速率为0.001~10 s-1、变形温度为650~850℃的高温变形过程中的流变应力行为进行了研究。利用光学显微镜分析了合金在热变形过程中的组织演变及动态再结晶机制。结果表明:流变应力随变形温度的升高而减小,随应变速率的提高而增大。升高变形温度以及降低应变速率,均有利于Cu-Cr-Zr合金的动态再结晶发生。从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的热变形激活能Q为392.5 kJ/mol,同时利用逐步回归的方法建立了该合金的流变应力方程。  相似文献   

4.
采用Gleeble-1500D热模拟试验机,研究了Cu-0.8Cr-0.3Zr合金在变形温度为650~950℃、应变速率为0.001~10 s-1、总压缩应变量60%条件下的流变行为,对热变形过程中的组织演变和动态再结晶机制进行了分析,同时分析了该合金的热加工图。结果表明,变形温度越高,应变速率越小,合金越容易发生动态再结晶,且对应的峰值应力也越小。利用逐步回归的方法建立该合金的流变应力方程。绘制了Cu-Cr-Zr合金的热加工图,确定了其热加工时的安全区与失稳区,得出了该合金在实验参数范围内热变形过程的最佳工艺参数:温度范围为850~900℃,应变速率范围为0.1~1 s-1。  相似文献   

5.
利用Gleeble-1500D热模拟试验机,采用等温压缩试验,研究了Cu-Fe-P-Zn-Sn-Mg合金在变形温度为750~950℃、应变速率为0.01~10s-1条件下的流变应力的变化规律,测定了其真应力-应变曲线,并分析了合金在热压缩过程中的组织演变规律。结果表明,合金的真应力-应变曲线具有典型的动态再结晶特征,其流变应力随变形温度的降低以及应变速率的提高而增大,且变形温度越高、应变速率越小,合金越容易发生动态回复和再结晶。在试验基础上,计算并建立了合金热变形过程中流变应力与变形温度和应变速率之间关系的热压缩高温变形本构方程。  相似文献   

6.
采用Gleeble-1500型热模拟机对电铸Ni-W合金在变形温度为400~600℃、应变速率为0.001~0.1 s-1条件下的热压缩变形进行研究,分析合金变形时的流变应力、应变速率及变形温度之间的关系,研究变形温度对合金显微组织的影响,并得到本构方程。结果表明:应变速率和变形温度对该材料的流变应力有显著影响,流变应力随变形温度的升高而降低,随应变速率的提高而增大。当变形温度高于550℃时,合金流变曲线呈现出明显的动态再结晶特征,合金显微组织为完全的动态再结晶组织,该合金的热变形激活能为411.55 kJ/mol。  相似文献   

7.
利用Gleeble-1500D热模拟试验机,对Cu-0.2%Zr-0.15%Y合金进行高温热压缩热模拟试验,对合金在应变速率为0.001~1 s-1、变形温度为550~900℃时,试验过程中的流变应力变化、动态再结晶机制及其微观组织变化进行了研究。结果表明,试验合金流变应力受应变温度和变形速率的影响极大,动态再结晶的显微组织对温度的变化反应敏感,当变形温度降低或者应变速率升高时,其流变应力曲线随之上升。通过流变应力、应变速率和变形温度之间的联系,解出了该合金在热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)以及其本构方程。  相似文献   

8.
在Gleeble 1500D热模拟试验机上,采用高温等温压缩试验对Cu-Ni-Si-P-Cr合金在应变速率为0.01~5 s 1、变形温度为600~800℃条件下的流变应力行为进行研究,利用光学显微镜分析合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:Cu-Ni-Si-P-Cr合金在热变形过程中发生了动态再结晶,且根据变形温度的不同,真应力—真应变曲线的特征有所不同。流变应力随变形温度升高而降低,随应变速率提高而增大。从流变应力、应变速率和温度的相关性得出该合金热压缩变形时的热变形激活能Q和本构方程。  相似文献   

9.
在GLEEBLE热模拟试验机上对变形态Ti40合金进行热压缩实验,采用基于Prasad准则的加工图技术,研究变形态Ti40合金在变形温度950℃~1100℃、应变速率0.001s-1~1.0s-1范围内的微观变形机制和流变失稳现象,并优化该合金的高温变形参数。结果表明,失稳区出现在低温、高应变速率区,当变形温度为950℃~1010℃、应变速率0.13s-1~1.0s-1时,失稳区会出现局部流动,在实际热加工时应尽量避开这一参数范围;变形温度950℃~1100℃、应变速率0.001s-1~0.01s-1为较佳的变形参数范围,其变形机制以动态再结晶为主,伴随动态回复,最佳的变形参数位于温度1050℃、应变速率0.001s-1附近,该区域发生了完全动态再结晶;除失稳区和较佳变形区以外的区域,变形机制以动态回复为主,伴随动态再结晶,是可加工的区域。  相似文献   

10.
通过 Gleeble-3800 热模拟试验机的热压缩实验,研究了 Ti-62A 合金在 800、850、900 和 950℃,应变速率为 0.001、0.01、0.1 和 1s-1 下的热变形行为和动态再结晶(DRX)规律。结果表明:Ti-62A 合金的流变应力受应变速率和变形温度的影响显著;流变应力随着变形温度的升高和应变速率的降低而降低;在 900~950℃、应变速率 0.01~1s-1 条件下,Ti-62A 合金的热变形应力-应变曲线属于动态回复型;该合金的热变形机制主要由位错运动控制,其动态软化机制包括晶界滑动和位错对消、攀移机制;Ti-62A 合金在热变形过程中,动态再结晶更有可能发生在较高的温度和较低的应变速率下,即 950℃ 和 0.001s-1;基于经典位错密度理论和 DRX 动力学理论,建立了加工硬化—动态回复和 DRX 软化效应的两阶段本构模型。DEFORM-3D 软件的仿真模拟结果证实,基于 DRX 软化效应的本构模型对 Ti-62A 合金在动态再结晶阶段的热变形行为的预测具有较高的准确性,能够为实际生产工艺的制定提供技术参考。  相似文献   

11.
在温度T=250~450℃,应变速率为0.001~10s-1的条件下,利用Gleeble-3500热模拟试验机对挤压Mg-7.8%Li-4.6%Zn-0.96%Ce-0.85%Y-0.30Zr合金进行高温热压缩试验,分析流变应力曲线特点。合金的流变应力曲线表现出动态再结晶特征,动态再结晶是热变形过程中的主要软化机制。流变应力峰值随温度的降低和应变速率的增大而升高。稀土相化合物和α相促进β相的动态再结晶,使α相再结晶减缓。在热变形过程中动态再结晶迅速,流变应力曲线表现为临界应变较小,加工硬化迅速被动态软化所掩盖。  相似文献   

12.
采用Gleeble-1500热模拟机对AZ91镁合金进行了高温压缩变形实验,分析了该合金在变形温度为250~400℃、应变速率为0.001~1 s-1条件下流变应力及组织演变规律。结果表明:合金的热变形过程均表现出明显的动态再结晶特征,其流变应力及组织均受变形温度和应变速率的因素影响显著;流变应力随变形温度的升高、应变速率的减小而降低,而再结晶晶粒尺寸则随之增大,且再结晶程度进行越为充分,其再结晶晶粒大小基本随Z参数自然对数值的增大而呈指数递减规律。  相似文献   

13.
利用Gleeble-1500D热模拟试验机对Cu-Cr-Zr和Cu-Cr-Zr-Y合金,进行高温等温压缩试验,研究了在变形温度为650~850℃、应变速率为0.001~10 s-1条件下两种合金的流变应力的变化规律,测定了真应力一应变曲线,从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和本构方程,并利用光学显微镜分析了合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:稀土元素Y的加入细化了微观组织,提高了Cu-Cr-Zr合金的动态再结晶体积分数,并且大幅降低了合金的热变形激活能Q,改善了其热加工性能。  相似文献   

14.
在Gleeble-1500D热模拟试验机上通过高温等温压缩试验,对Cu-0.4Cr-0.15Zr-0.05Ce合金在应变速率为0.01 ~5 s-1、变形温度为600 ~800℃的动态再结晶行为以及组织转变进行了研究.结果表明:流变应力随变形温度的升高而减小,随应变速率的提高而增大.同时从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的热变形激活能Q为495.8 kJ/mol,同利用逐步回归的方法建立了该合金的流变应力方程.利用光学显微镜分析了形变温度对该合金在热压缩过程中的组织演变及动态再结晶形核机制的影响规律.  相似文献   

15.
利用Gleeble-1500D热模拟试验机对Cu-Cr-Zr-Y合金进行高温等温压缩试验,变形温度和应变速率分别为650~850℃和0.001~10 s-1,对合金高温热压缩过程中的变形行为进行研究。结果表明:其流变应力随应变速率的提高而增大,随变形温度的升高而减小。并根据动态材料模型绘制和分析了该合金的热加工图,得出了热变形过程的最佳工艺参数为:温度为800~850℃,应变速率范围为0.001~0.1 s-1。  相似文献   

16.
在Gleeble-1500D热/力模拟试验机上进行高温等温单道次压缩试验,探讨Cu-0.8Cr-0.3Zr-0.03P合金在变形温度和应变速率分别为650~950℃和0.001~10 s-1条件下的热变形特性。通过真应力-真应变曲线的采集数据计算出合金高温热压缩时的本构方程和热变形激活能Q,根据动态模型绘制真应变为0.3和0.5的热加工图,并结合显微组织分析合金的变形机理,确定热加工失稳区间。研究表明:功率耗散因子η随变形温度递升呈增大趋势,合金的流变软化机理由动态回复逐渐向动态再结晶转变。得出热压缩过程的的最优加工范围为:温度为730~875℃,应变速率为0.1~1 s-1。  相似文献   

17.
采用Gleeble-1500D热模拟试验机,对Cu-Cr-Zr合金在应变速率为0.001~10 s-1、变形温度为650~850℃的高温变形过程中的变形行为(流变应力和显微组织)进行研究。根据动态材料模型计算并分析该合金的热加工图,并结合变形显微组织观察确定该合金在实验条件下的高温变形机制及加工工艺。结果表明:流变应力随变形温度的升高而减小,随应变速率的提高而增大。从流变应力、应变速率和温度的相关性,得出该合金高温热压缩变形时的热变形激活能(Q)为392.5 kJ/mol,同时利用逐步回归的方法建立该合金的流变应力方程。利用热加工图确定热变形的流变失稳区,并且获得了实验参数范围内热变形过程的最佳工艺参数:温度范围为750~850℃,应变速率范围为0.001~0.1 s-1,并利用热加工图分析了该合金不同区域的高温变性特征以及组织变化。  相似文献   

18.
在THERMECMASTER-Z型热模拟试验机上,对锻态TB6钛合金在真应变为0.92、变形温度为800℃~1150℃、应变速率为0.001s-1~1s-1的条件下进行等温恒应变速率压缩试验,分析合金在β单相区条件下的热变形特点,并观察金相组织。结果表明,应变速率对合金流动应力的影响较显著;而变形温度对合金流动应力的影响在较高应变速率时较大,在较低应变速率时较小。动态再结晶晶粒尺寸和动态再结晶体积分数,随温度的升高而增大,随应变速率的增大而减小。从晶粒细化和动态再结晶组织均匀性考虑,当真应变为0.92时,变形温度选择在950℃~1050℃之间,应变速率选择在0.01s-1为宜。  相似文献   

19.
采用Gleeble-3500热压缩实验机对Mg-13Gd-4Y-2Zn-0.5Zr合金在温度360~480℃、应变速率0.001~1 s-1、最大变形程度为60%的条件下进行高温压缩实验研究。分析了应变速率和变形温度对该合金在高温变形时流变应力的影响,引入温度补偿应变速率因子Z构建合金高温流变应力的本构方程;研究了合金在不同压缩条件下的组织变化及动态再结晶晶粒尺寸,为后续有限元组织模拟提供了实验依据。结果表明:该合金的真应力-真应变曲线具有动态再结晶曲线的特征。动态再结晶的再结晶晶粒尺寸随温度的降低、应变速率的增大而减小;而且峰值应力也随再结晶晶粒尺寸的减小而增大。  相似文献   

20.
通过Gleeble-3500热压缩模拟试验机对6061铝合金进行热压缩实验,借助金相显微镜和透射电子显微镜研究合金在变形温度为340℃?490℃,应变速率为0.001s-1?1s-1条件下热变形和动态再结晶行为。结果表明:合金的动态再结晶行为对变形温度和应变速率十分敏感,温度的升高和应变速率的减小都会促进动态再结晶的发生。基于峰值应力建立了合金热变形本构方程,计算得出热变形激活能为235.155kJ·mol-1。采用加工硬化率-流变应力曲线确定了合金热变形过程中的临界应力(应变)和峰值应力(应变)与Z参数的关系模型。随着温度的升高和应变速率的减小,DRX临界应力(应变)和峰值应力(应变)而减小。依据Avrami方程建立了合金动态再结晶体积分数模型,动态再结晶体积分数随应变的增加,呈现先缓慢增加后迅速增加再缓慢增加的特征,所建模型能够较为准确的预测该合金的动态再结晶行为。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号