首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
为了制备特定聚合度范围的壳寡糖(Chitooligosaccharides,COS),本研究探索了物料浓度、温度和跨膜压差(transmembrane pressure,TMP)条件对1000 Da纳滤膜分离壳寡糖混合物过程的影响,并针对连续渗滤过程,建立了壳寡糖收率和纯度预测的数学模型。结果表明,料液浓度70 g/L、温度45℃和跨膜压差15 bar为最佳分离条件。在最佳条件下,通过连续渗滤和纳滤浓缩过程处理壳寡糖混合物,获得了以聚合度(Degree of polymerization,DP)2~5为主的壳寡糖,纯度和收率分别为82.1%和42.1%,并利用数学模型成功预测了聚合度2~5壳寡糖的收率和纯度。本研究建立了一种基于纳滤膜分离的聚合度2~5壳寡糖的制备方法,为壳寡糖的功能研究和应用开发提供了基础。  相似文献   

2.
化学法与酶法是多糖降解制备低聚糖的常用手段,化学法制备的产物往往组分复杂难以获得单一聚合度的低聚糖,而酶法因其特异性高,能得到均一性高的目标产物,从而成为近年来研究热点。该研究首先优化了酸解生产结冷胶寡糖的工艺条件,优化得到的酸水解条件为底物质量浓度5.0 g/L、HCl浓度0.5 mol/L、水解3 h;进一步提出了发酵耦合酶解一步法制备结冷胶寡糖策略,结果表明,发酵初始酵母粉添加量20 g/L、甲醇添加量1%、发酵初始pH 6.0为结冷胶裂解酶的最佳发酵条件;发酵初始添加2.0 g/L结冷胶,发酵水解96 h为最佳酶解条件。最后通过傅里叶变换红外光谱与基质辅助激光解析电离飞行时间质谱技术对2种降解方式的产物进行了对比分析。酸水解后得到了聚合度为5、8、12的结冷胶寡糖,酶解后得到了聚合度为4的单一结冷胶寡糖,酶解产物中出现了CC结构,酸解产物结构没有变化,该文为结冷胶寡糖制备及探究其功能活性提供了一个可行的途径。  相似文献   

3.
聚合度4~6壳寡糖的制备及其活性研究   总被引:1,自引:0,他引:1  
制备高活性壳寡糖并对其生物活性进行研究。专一性壳聚糖酶酶解壳聚糖制备壳寡糖,采用乙酰丙酮法测定壳寡糖的数均分子量;不同剂量壳寡糖灌喂小鼠,探讨壳寡糖对小鼠免疫功能的影响以及对小鼠肝脏的保护作用。所得壳寡糖的数均分子量为1246.38,聚合度为4~6;该壳寡糖对小鼠免疫器官具有明显的保护和促进生长作用,显著提高了小鼠的抗疲劳能力以及抗菌活力,对小鼠肝脏具有显著的保护作用。专一性壳聚糖酶酶解所得聚合度4~6的壳寡糖具有较高的生物活性,壳寡糖在保健食品开发及医药等领域的应用前景广阔。  相似文献   

4.
目的 研究聚合度6~8的壳寡糖的制备工艺.方法 选用合适的酶降解壳聚糖,超滤、干燥;用TLC、HPLC、MALDI-TOF-MS检测产品.结果 产品为白色,主要为聚合度6~8的壳寡糖.结论 此工艺能用于制备聚合度主要为6~8的壳寡糖.  相似文献   

5.
聚合度为6~8的壳寡糖的制备   总被引:1,自引:0,他引:1  
目的研究聚合度6~8的壳寡糖的制备工艺。方法选用合适的酶降解壳聚糖,超滤、干燥;用TLC、HPLC、MALDI—TOF—MS检测产品。结果产品为白色,主要为聚合度6~8的壳寡糖。结论此工艺能用于制备聚合度主要为6~8的壳寡糖。  相似文献   

6.
采用还原糖电化学分析仪测定壳寡糖制备过程中还原糖的含量。仪器线性范围0.005%~0.500%氨基葡萄糖,检测限为0.005%。通过还原糖含量的变化,研究了不同酶促条件如温度、pH、底物浓度对反应的影响,优化了酶解工艺,并得到酶促反应中还原糖浓度变化与产物聚合度的关系。通过实验发现,还原糖电化学分析仪适合测定壳寡糖制备过程低浓度还原糖,仪器方法快速、准确、灵敏度高。  相似文献   

7.
过氧化氢法制备特定聚合度壳寡糖的工艺研究   总被引:2,自引:0,他引:2  
实验对过氧化氢法氧化降解壳聚糖,制备聚合度为6~8的壳寡糖的工艺条件进行了研究。得到壳聚糖降解的最佳环境为弱酸性[3%HAc(v/v)],在料液比5%、反应时间8h、反应温度50℃、氧化剂浓度5%时,壳寡糖得率是62.70%,经GPC检测平均聚合度为6.87。聚合度符合预期要求,得率优于已报道的平均水平。  相似文献   

8.
优化并全合成解淀粉芽孢杆菌(Bacillus amyloliquefaciens)壳聚糖酶编码基因并在毕赤酵母(Pichia pastoris)中实现分泌表达,表达产物的蛋白质量浓度达到0.23 mg/mL。壳聚糖水解酶的最适pH值为5.0,最适温度为45 ℃,比活力达52.2 U/mL。该酶在50 ℃以下较稳定。利用该酶水解低脱乙酰度壳聚糖并对产物进行了组成及结构分析。基质辅助激光解吸电离飞行时间质谱分析结果显示,酶解产物中包含聚合度3~15、不同脱乙酰度的壳寡糖。核磁共振鉴定结果显示,壳寡糖组分的还原末端及非还原末端均主要由氨基葡萄糖组成。综上,本研究高效表达了来源于解淀粉芽孢杆菌的壳聚糖酶,并制备了确定末端结构的壳寡糖,为壳寡糖的结构与功能关系研究提供理论支持。  相似文献   

9.
采用碱法提取制备玉米芯木聚糖,以提取率为指标,研究了碱液浓度、提取温度、处理时间、提取振荡速度、醇沉p H等因素对提取率的影响,通过木聚糖酶酶解木聚糖提取低聚木糖,以酶解产物中还原糖含量、可溶性总糖含量及平均聚合度DP为指标,采用正交试验探讨了酶浓度、酶解温度、酶解时间、p H值、底物浓度对酶解产物的影响,得出酶解玉米芯木聚糖制备低聚木糖的最佳工艺条件为:底物浓度为12%(w/v),酶解p H为4,酶解温度为45℃条件下添加0.06%(w/v)的木聚糖酶,酶解8h,得到总糖含量为18.88mg/m L,还原糖含量为9.46 mg/m L,聚合度DP为1.85。  相似文献   

10.
利用全基因合成方法合成了强烈炽热球菌(Pyrococcus furiosus)的几丁质酶编码基因并在大肠杆菌(Escherichia coli)中实现了可溶表达。利用该酶对低脱乙酰度壳聚糖进行水解并对获得的壳寡糖产物进行组成及结构分析。分子排阻高效液相色谱结果显示,水解产物相对分子质量分布范围为1?000~5?000。基质辅助激光解吸电离飞行时间质谱分析结果显示,酶解产物中包含聚合度2~9、不同脱乙酰度的壳寡糖。核磁共振对酶解产物壳寡糖的结构鉴定结果显示,所有寡糖组分的还原端均主要由两个连续的N-乙酰氨基葡萄糖组成。综上,本研究利用来源于强烈炽热球菌的几丁质酶制备了还原末端结构确定的低脱乙酰度壳寡糖,为复杂结构壳寡糖结构与功能关系研究提供了理论支持。  相似文献   

11.
研究枯草芽孢杆菌壳聚糖酶基因(BsCsn46)在巴斯德毕赤酵母(Pichia pastoris)GS115中的高效表达、重组酶性质及其酶解特性。重组菌在5 L发酵罐高密度发酵后胞外酶活力高达50 370 U/mL,蛋白质量浓度15.7 mg/mL。粗酶经强阴离子交换层析纯化,纯酶比活力为4 065.7 U/mg,最适pH 6.0,最适温度55 ℃,在45 ℃以下保持稳定。该酶水解3 g/100 mL壳聚糖得到主产物为二糖、三糖和四糖的壳寡糖,水解率为92.8%,壳寡糖得率为90.9%。本研究的重组壳聚糖酶产酶水平和水解效率高,为工业化制备壳聚糖酶及大规模制备壳寡糖的应用提供了理论支持。  相似文献   

12.
以珍珠龙胆石斑鱼肉为原料,利用蛋白酶酶解制备生物活性肽。以水解度和DPPH自由基清除率为指标,在单因素实验的基础上采用响应面分析法优化制备工艺。并采用超滤法对酶解产物进行分离纯化,同时进行抗氧化活性探究。结果表明:珍珠龙胆石斑鱼肉酶解工艺条件为:采用风味蛋白酶,酶添加量1050 U/g,在pH7.0、53℃、料水比1:3.5条件下酶解5.5 h,水解度为9.99%±0.39%。酶解产物与超滤组分均具有较强DPPH自由基清除能力,其IC50值在0.63~0.88 mg/mL之间;EH-2(5~8 kDa)和EH-3(3~5 kDa)有较强的羟基自由基清除能力,其IC50值分别为16.94和16.38 mg/mL;酶解产物与超滤组分均具有还原能力,且酶解产物还原能力最佳。优化的珍珠龙胆石斑鱼肉肽的酶法制备工艺合理且可行,其酶解产物与超滤组分具有较强的抗氧化性,可作为功能食品的基料应用。  相似文献   

13.
Crude chitosanase from Bacillus cereus NTU-FC-4 was separated by a cation exchanger to three fractions named CBCI, CBCII, and CBCIII. The CBCI hydrolyzed chitosan to yield dimers. The primary hydrolytic products of CBCII were low degree polymerized (DP) chitooligosaccharides. The CBCIII had the fastest reaction rate and yielded high DP chitooligosaccharides (heptamer and higher DP oligomers). When CBCIII was used in the ultrafiltration membrane reactor with enzyme/substrate ratio 0.06 unit/mg and 100 min of residence time (RT), the concentration of high DP oligomers was 9.78 mg/mL which occupied ca. 48% of total oligomers in the final product as compared to ca. 29% resulted from the crude enzyme. Decrease of RT to 50 min and 33 min, the high DP oligomers in the products were ca. 61% and 69%, respectively. This system could be operated for at least 24 h and kept a constant permeate flux and product output rate.  相似文献   

14.
为了省去制备胶状壳聚糖的工艺,能有效降解粉末壳聚糖利用到低聚糖的生产,利用自然环境中筛选得到的产壳聚糖酶菌株蜡样芽孢杆菌D-11,进行了基质条件优化实验。结果表明,以筛孔分别为20、40、60、80目的粉末壳聚糖(3±0.5 cm;脱乙酰度98.1%)为基质,培养液含有1%的吐温60时,降解粉末壳聚糖的能力比对照提高12%,当筛孔60目的粉末壳聚糖为碳源(浓度0.6%)时,降解粉末壳聚糖的能力提高62.5%。随着基质每毫克中酶活性的提高,对粉末壳聚糖的分解率也随之增加。同时利用薄层色谱法分析低聚糖的分布,有效证明了该D-11菌株具有降解粉末壳聚糖的能力,且发现壳聚糖酶对基质粉末状态的降解率有选择性。  相似文献   

15.
为探究具有抑菌作用的核桃粕蛋白酶解抑菌肽的制备工艺,本实验以核桃仁经压榨提油后的副产物-核桃粕为原材料,利用酶解法制备核桃粕蛋白抑菌肽,优化制备工艺,进一步分离纯化,测试抑菌肽对金黄色葡萄球菌、大肠杆菌、枯草芽孢杆菌的抑制效果,筛选出具有最佳抑菌效果抑菌肽组分。研究结果表明:响应面优化胃蛋白酶酶解核桃粕工艺最佳条件为:温度54℃,pH3.46,加酶量5475.71 U/g,蛋白质水解度最优,可达13.99%;利用超滤技术对酶解肽分离纯化,得到4种不同分子量的酶解肽,抑菌实验表明H-Ⅱ (分子量为3~10 kDa)范围的酶解肽抑菌效果显著高于其他分子量范围的酶解肽(P<0.05)。本研究为核桃粕的深入研究利用以及新型抑菌肽产品的开发提供了数据支撑。  相似文献   

16.
本文以蛋壳膜为研究对象,采用挤压膨化协同酶解工艺制备壳膜多肽。以总氮回收率、D-葡萄糖醛酸提取量及抗氧化性为指标,确定最佳工艺条件为:挤压膨化温度140 ℃,螺杆转速100 r/min,水分含量20%,酶解时间6 h,加酶量12000 U/g,温度55 ℃。在该条件下总氮回收率达60.8%,D-葡萄糖醛酸提取量达12.4 mg/g,壳膜多肽的ABTS自由基清除率为29.46%(0.1 mg/mL),OH自由基清除率为26.58%(5 mg/mL),Fe2+螯合能力为50.25%(0.4 mg/mL),细胞抗氧化活性达65%(10 μg/mL)。相对分子质量分布结果表明壳膜多肽中主要成分为低聚肽(252~2435 Da),占81.8%。氨基酸组成分析结果表明壳膜肽中Asp和Glu含量较高,与抗氧化活性有关的氨基酸含量为44.70 g/100 g蛋白。因此,蛋壳膜多肽有潜力作为天然抗氧化剂应用于食品、保健品或化妆品领域。  相似文献   

17.
酶法制备麸皮中低聚木糖的研究   总被引:1,自引:1,他引:0  
木聚糖酶酶解小麦麸皮中的木聚糖制备低聚木糖,试验确定了最佳的酶解工艺条件,即酶添加量为800 IU/g,麸皮用量为12%,酶解温度为55℃,酶解时间为4h,总糖得率为61.02%,DP值为3.01,低聚木糖的得率为28.67%。  相似文献   

18.
为了优化鲐鱼免疫活性肽的酶法制备工艺,以水解度和小鼠脾淋巴细胞相对增殖率为指标,在单因素实验的基础上,选择酶添加量、酶解时间和酶解温度为考察因素,采用Box-Behnken法进行三因素三水平响应面试验设计,确定鲐鱼免疫活性肽的最佳酶解条件,并对得到的鲐鱼免疫活性肽进行氨基酸组成分析。结果表明,中性蛋白酶为最优蛋白酶,最佳酶解条件为酶添加量8800 U/g、时间7 h、温度52 ℃,验证实验发现在该条件下得到的酶解产物对小鼠脾淋巴细胞相对增殖率为48.11%±2.67%,与回归方程预测值相近。同时鲐鱼免疫活性肽氨基酸含量丰富,其中人体必需氨基酸达45.52%,疏水性氨基酸含量为32.00%。研究结果为鲐鱼免疫活性肽的酶法制备提供了理论依据,为进一步实现鲐鱼资源的高值化利用提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号